feat(scripts): Add figure for intervention and inequality types
This commit is contained in:
parent
3a4a7b5621
commit
ff4af556a5
1 changed files with 56 additions and 1 deletions
|
@ -476,9 +476,10 @@ for e in sample_relevant:
|
|||
ed.get("type", Field(key="type", value=None)).value,
|
||||
ed.get("times-cited", Field(key="times-cited", value=None)).value,
|
||||
ed.get("usage-count-since-2013", Field(key="usage-count-since-2013", value=None)).value,
|
||||
ed.get("keywords", Field(key="keywords", value=None)).value,
|
||||
])
|
||||
# FIXME do not just drop missing values
|
||||
bib_df = pd.DataFrame(reformatted, columns = ["Year", "Author", "Title", "Type", "Cited", "Usage"])
|
||||
bib_df = pd.DataFrame(reformatted, columns = ["Year", "Author", "Title", "Type", "Cited", "Usage", "Keywords"])
|
||||
bib_df = bib_df.dropna(how="any")
|
||||
bib_df["Date"] = pd.to_datetime(bib_df["Year"], format="mixed")
|
||||
bib_df["Year"] = bib_df["Date"].dt.year
|
||||
|
@ -538,6 +539,60 @@ This is because, as @fig-publications-per-year showed, the overall output was no
|
|||
In all of these cases, such outliers should provide clear points of interest during the screening process for possible re-evaluation of current term clusters for scoping.
|
||||
Should they point towards gaps (or over-optimization) of sepcific areas of interest during those time-frames or more generally, they may provide an impetus for tweaking the identification query terms to better align with the prevailing literature output.
|
||||
|
||||
```{python}
|
||||
#| label: fig-intervention-types
|
||||
#| fig-cap: Predominant type of intervention
|
||||
#| fig-width: 18cm
|
||||
#| column: page
|
||||
|
||||
interv_type_df = (
|
||||
bib_df["Keywords"]
|
||||
.str.replace(r"\_", " ")
|
||||
.str.extractall(r"type::([\w ]+)")
|
||||
.reset_index(drop=True)
|
||||
.rename(columns = {0:"Intervention type"})
|
||||
)
|
||||
|
||||
sort_order = interv_type_df["Intervention type"].value_counts(ascending=False).index
|
||||
fig = plt.figure()
|
||||
fig.set_size_inches(12, 4)
|
||||
ax = sns.countplot(interv_type_df, x="Intervention type", order=sort_order)
|
||||
plt.setp(ax.get_xticklabels(), rotation=45, ha="right",
|
||||
rotation_mode="anchor")
|
||||
plt.show()
|
||||
```
|
||||
|
||||
{{++ TODO: describe intervention types with complete dataset ++}}
|
||||
|
||||
```{python}
|
||||
#| label: fig-inequality-types
|
||||
#| fig-cap: Types of inequality analyzed
|
||||
#| fig-width: 18cm
|
||||
#| column: page
|
||||
|
||||
inequ_type_df = (
|
||||
bib_df["Keywords"]
|
||||
.str.replace(r"\_", " ")
|
||||
.str.extractall(r"inequality::([\w ]+)")
|
||||
.reset_index(drop=True)
|
||||
.rename(columns = {0:"Inequality type"})
|
||||
)
|
||||
|
||||
sort_order = inequ_type_df["Inequality type"].value_counts(ascending=False).index
|
||||
fig = plt.figure()
|
||||
fig.set_size_inches(12, 4)
|
||||
ax = sns.countplot(inequ_type_df, x="Inequality type", order=sort_order)
|
||||
plt.setp(ax.get_xticklabels(), rotation=45, ha="right",
|
||||
rotation_mode="anchor")
|
||||
plt.show()
|
||||
```
|
||||
|
||||
Income inequality is the primary type of inequality interrogated in most of the relevant studies.
|
||||
This follows the identified lens income inequality can provide through which to understand other inequalities ---
|
||||
many studies use income measurements and changes in income or income inequality over time as indicators to understand a variety of other inequalities' linkages through.
|
||||
|
||||
{{++ TODO: describe inequality types with complete dataset ++}}
|
||||
|
||||
# Synthesis of Evidence
|
||||
|
||||
This section will present a synthesis of evidence from the scoping review.
|
||||
|
|
Loading…
Reference in a new issue