diff --git a/scoping_review.qmd b/scoping_review.qmd index f555193..e6b242f 100644 --- a/scoping_review.qmd +++ b/scoping_review.qmd @@ -476,9 +476,10 @@ for e in sample_relevant: ed.get("type", Field(key="type", value=None)).value, ed.get("times-cited", Field(key="times-cited", value=None)).value, ed.get("usage-count-since-2013", Field(key="usage-count-since-2013", value=None)).value, + ed.get("keywords", Field(key="keywords", value=None)).value, ]) # FIXME do not just drop missing values -bib_df = pd.DataFrame(reformatted, columns = ["Year", "Author", "Title", "Type", "Cited", "Usage"]) +bib_df = pd.DataFrame(reformatted, columns = ["Year", "Author", "Title", "Type", "Cited", "Usage", "Keywords"]) bib_df = bib_df.dropna(how="any") bib_df["Date"] = pd.to_datetime(bib_df["Year"], format="mixed") bib_df["Year"] = bib_df["Date"].dt.year @@ -538,6 +539,60 @@ This is because, as @fig-publications-per-year showed, the overall output was no In all of these cases, such outliers should provide clear points of interest during the screening process for possible re-evaluation of current term clusters for scoping. Should they point towards gaps (or over-optimization) of sepcific areas of interest during those time-frames or more generally, they may provide an impetus for tweaking the identification query terms to better align with the prevailing literature output. +```{python} +#| label: fig-intervention-types +#| fig-cap: Predominant type of intervention +#| fig-width: 18cm +#| column: page + +interv_type_df = ( + bib_df["Keywords"] + .str.replace(r"\_", " ") + .str.extractall(r"type::([\w ]+)") + .reset_index(drop=True) + .rename(columns = {0:"Intervention type"}) +) + +sort_order = interv_type_df["Intervention type"].value_counts(ascending=False).index +fig = plt.figure() +fig.set_size_inches(12, 4) +ax = sns.countplot(interv_type_df, x="Intervention type", order=sort_order) +plt.setp(ax.get_xticklabels(), rotation=45, ha="right", + rotation_mode="anchor") +plt.show() +``` + +{{++ TODO: describe intervention types with complete dataset ++}} + +```{python} +#| label: fig-inequality-types +#| fig-cap: Types of inequality analyzed +#| fig-width: 18cm +#| column: page + +inequ_type_df = ( + bib_df["Keywords"] + .str.replace(r"\_", " ") + .str.extractall(r"inequality::([\w ]+)") + .reset_index(drop=True) + .rename(columns = {0:"Inequality type"}) +) + +sort_order = inequ_type_df["Inequality type"].value_counts(ascending=False).index +fig = plt.figure() +fig.set_size_inches(12, 4) +ax = sns.countplot(inequ_type_df, x="Inequality type", order=sort_order) +plt.setp(ax.get_xticklabels(), rotation=45, ha="right", + rotation_mode="anchor") +plt.show() +``` + +Income inequality is the primary type of inequality interrogated in most of the relevant studies. +This follows the identified lens income inequality can provide through which to understand other inequalities --- +many studies use income measurements and changes in income or income inequality over time as indicators to understand a variety of other inequalities' linkages through. + +{{++ TODO: describe inequality types with complete dataset ++}} + # Synthesis of Evidence This section will present a synthesis of evidence from the scoping review.