149 lines
5.2 KiB
Text
149 lines
5.2 KiB
Text
load data, boilerplate:
|
|
|
|
```{python}
|
|
#| echo: false
|
|
from pathlib import Path
|
|
import re
|
|
## standard imports
|
|
from IPython.core.display import Markdown as md
|
|
import numpy as np
|
|
import pandas as pd
|
|
from matplotlib import pyplot as plt
|
|
import seaborn as sns
|
|
from tabulate import tabulate
|
|
import bibtexparser
|
|
|
|
sns.set_style("whitegrid")
|
|
|
|
DATA_DIR=Path("./02-data")
|
|
RAW_DATA=DATA_DIR.joinpath("raw")
|
|
WORKING_DATA=DATA_DIR.joinpath("intermediate")
|
|
PROCESSED_DATA=DATA_DIR.joinpath("processed")
|
|
SUPPLEMENTARY_DATA=DATA_DIR.joinpath("supplementary")
|
|
|
|
bib_string=""
|
|
for partial_bib in RAW_DATA.glob("**/*.bib"):
|
|
with open(partial_bib) as f:
|
|
bib_string+="\n".join(f.readlines())
|
|
bib_sample_raw_db = bibtexparser.parse_string(bib_string)
|
|
|
|
bib_string=""
|
|
for partial_bib in WORKING_DATA.glob("**/*.bib"):
|
|
with open(partial_bib) as f:
|
|
bib_string+="\n".join(f.readlines())
|
|
bib_sample = bibtexparser.parse_string(bib_string)
|
|
```
|
|
|
|
```{python}
|
|
# load relevant studies
|
|
from src import load_data
|
|
|
|
# load zotero-based metadata: citations and uses
|
|
zot_df = pd.DataFrame([
|
|
[
|
|
entry["doi"] if "doi" in entry.fields_dict else None,
|
|
entry["times-cited"] if "times-cited" in entry.fields_dict else None,
|
|
entry["usage"] if "usage" in entry.fields_dict else None,
|
|
entry["keywords"] if "keywords" in entry.fields_dict else None,
|
|
]
|
|
for entry in bib_sample.entries
|
|
], columns = ["doi", "cited", "usage", "keywords"]).drop_duplicates("doi").set_index("doi")
|
|
|
|
# Add WB country grouping definitions (income group, world region)
|
|
WB_COUNTRY_GROUPS_FILE = Path(f"{SUPPLEMENTARY_DATA}/wb-country-groupings.xlsx").resolve()
|
|
df_country_groups = pd.read_excel(WB_COUNTRY_GROUPS_FILE).set_index("Economy")
|
|
|
|
bib_df = (load_data.from_yml(f"{PROCESSED_DATA}")
|
|
.assign(
|
|
doi=lambda _df: _df["uri"].str.extract(r"https?://(?:dx\.)?doi\.org/(.*)", expand=False),
|
|
zot_cited=lambda _df: _df["doi"].map(zot_df["cited"]),
|
|
zot_usage=lambda _df: _df["doi"].map(zot_df["usage"]),
|
|
zot_keywords=lambda _df: _df["doi"].map(zot_df["keywords"]),
|
|
date = lambda _df: pd.to_datetime(_df["year"], format="%Y"),
|
|
year = lambda _df: _df["date"].dt.year,
|
|
region = lambda _df: _df["country"].map(df_country_groups["Region"]),
|
|
income_group = lambda _df: _df["country"].map(df_country_groups["Income group"]),
|
|
)
|
|
.query("year >= 2000")
|
|
)
|
|
zot_df = None
|
|
df_country_groups = None
|
|
```
|
|
|
|
```{python}
|
|
df_country_groups = pd.concat([pd.read_excel(WB_COUNTRY_GROUPS_FILE), pd.DataFrame(data={'Economy':['global'],'Code':['WLD'],'Region':['Europe & Central Asia;South Asia;North America;East Asia & Pacific;Sub-Saharan Africa;Europe & Central Asia;Latin America & Caribbean'], 'Income group':[''], 'Lending category':['']})]).set_index("Economy")
|
|
|
|
def countries_to_regions(countries:str):
|
|
res = set()
|
|
for c in countries.replace(" ;", ";").replace("; ",";").split(";"):
|
|
if c in df_country_groups.index:
|
|
region = df_country_groups.at[c,'Region']
|
|
res.add(region)
|
|
return ";".join(res)
|
|
|
|
# countries_to_regions("India; Nicaragua")
|
|
bib_df['region'] = bib_df['country'].map(countries_to_regions)
|
|
bib_df['region'].value_counts().plot.bar()
|
|
```
|
|
|
|
```{python}
|
|
#| label: fig-intervention-types
|
|
#| fig-cap: Predominant type of intervention
|
|
|
|
by_intervention = (
|
|
bib_df.groupby(["author", "year", "title", "design", "method", "representativeness", "citation"])
|
|
.agg(
|
|
{
|
|
"intervention": lambda _col: "; ".join(_col),
|
|
}
|
|
)
|
|
.reset_index()
|
|
.drop_duplicates()
|
|
.assign(
|
|
intervention=lambda _df: _df["intervention"].apply(
|
|
lambda _cell: set([x.strip() for x in re.sub(r"\(.*\)", "", _cell).split(";")])
|
|
),
|
|
)
|
|
.explode("intervention")
|
|
)
|
|
sort_order = by_intervention["intervention"].value_counts().index
|
|
|
|
fig = plt.figure()
|
|
fig.set_size_inches(6, 3)
|
|
ax = sns.countplot(by_intervention, x="intervention", order=by_intervention["intervention"].value_counts().index)
|
|
plt.setp(ax.get_xticklabels(), rotation=45, ha="right",
|
|
rotation_mode="anchor")
|
|
plt.show()
|
|
```
|
|
|
|
datavis:
|
|
|
|
|
|
```{python}
|
|
findings_institutional = pd.read_csv("02-data/supplementary/findings-institutional.csv")
|
|
findings_institutional
|
|
from src.model import validity
|
|
import math
|
|
|
|
validities = validity.calculate(by_intervention)
|
|
valid_subset = validities[["internal_validity", "external_validity", "citation"]].fillna(1.0).drop_duplicates(subset=["citation"]).sort_values("internal_validity")
|
|
def combined_validities(df_in, column: str = "internal_validity"):
|
|
if not isinstance(df_in, str):
|
|
return
|
|
combined = 0.0
|
|
for study in df_in.split(";"):
|
|
new = valid_subset.loc[valid_subset["citation"] == study, column]
|
|
if len(new) > 0 and not math.isnan(new.iat[0]):
|
|
combined += new.iat[0]
|
|
if combined:
|
|
return combined
|
|
return 0.0
|
|
def combined_external(df_in, column: str = "external_validity"):
|
|
return combined_validities(df_in, column)
|
|
|
|
findings_institutional["internal_validity"] = findings_institutional["studies"].apply(combined_validities)
|
|
findings_institutional["external_validity"] = findings_institutional["studies"].apply(combined_external)
|
|
findings_institutional[["area of policy", "internal_validity", "external_validity", "findings", "channels"]]
|
|
```
|
|
|
|
|