82 lines
2.4 KiB
Python
82 lines
2.4 KiB
Python
from typing import cast
|
|
|
|
from pandas import DataFrame
|
|
|
|
|
|
def calculate_validities(
|
|
df: DataFrame, repr_col: str = "representativeness", method_col: str = "method"
|
|
) -> DataFrame:
|
|
EXT_COL_NAME: str = "external_validity"
|
|
INT_COL_NAME: str = "internal_validity"
|
|
cols = {EXT_COL_NAME: 0, INT_COL_NAME: 0}
|
|
|
|
vd = df[
|
|
(df["design"] == "quasi-experimental") | (df["design"] == "experimental")
|
|
].copy()
|
|
vd.assign(**cols)
|
|
vd = cast(DataFrame, vd)
|
|
|
|
vd[repr_col] = vd[repr_col].fillna("")
|
|
vd[method_col] = vd[method_col].fillna("")
|
|
# needs to check national before subnational, subnational before local
|
|
vd.loc[vd[repr_col].str.contains("national"), EXT_COL_NAME] = 5.0
|
|
vd.loc[vd[repr_col].str.contains("regional"), EXT_COL_NAME] = 4.0
|
|
vd.loc[vd[repr_col].str.contains("subnational"), EXT_COL_NAME] = 3.0
|
|
vd.loc[vd[repr_col].str.contains("local"), EXT_COL_NAME] = 2.0
|
|
|
|
# needs to go lowest to highest in case of multiple mentioned approaches
|
|
vd.loc[
|
|
vd[method_col].str.contains("|".join(["OLS", "ordinary.least.square"])),
|
|
INT_COL_NAME,
|
|
] = 2.0
|
|
vd.loc[
|
|
vd[method_col].str.contains("|".join(["DM", "discontinuity.matching"])),
|
|
INT_COL_NAME,
|
|
] = 3.0
|
|
vd.loc[
|
|
vd[method_col].str.contains(
|
|
"|".join(["DID", "difference.in.diff", "diff.in.diff", "triple.diff"])
|
|
),
|
|
INT_COL_NAME,
|
|
] = 3.0
|
|
vd.loc[
|
|
vd[method_col].str.contains(
|
|
"|".join(["PSM", "propensity.score.matching", "score.matching"])
|
|
),
|
|
INT_COL_NAME,
|
|
] = 3.5
|
|
vd.loc[
|
|
vd[method_col].str.contains("|".join(["IV", "instrumental.variable"])),
|
|
INT_COL_NAME,
|
|
] = 4.0
|
|
vd.loc[
|
|
vd[method_col].str.contains("|".join(["RD", "regression.discontinuity"])),
|
|
INT_COL_NAME,
|
|
] = 4.5
|
|
vd.loc[vd[method_col].str.contains("RCT"), INT_COL_NAME] = 5.0
|
|
|
|
return vd
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import os
|
|
import sys
|
|
from io import StringIO
|
|
from pathlib import Path
|
|
|
|
import load_data
|
|
|
|
if len(sys.argv) == 2:
|
|
df = load_data.from_yml(Path(sys.argv[1]))
|
|
else:
|
|
df = load_data.from_yml()
|
|
|
|
df = calculate_validities(df)
|
|
output = StringIO()
|
|
df.to_csv(output)
|
|
output.seek(0)
|
|
try:
|
|
print(output.read())
|
|
except BrokenPipeError:
|
|
devnull = os.open(os.devnull, os.O_WRONLY)
|
|
os.dup2(devnull, sys.stdout.fileno())
|