fix(repo): Rename all references to data and output dir

This commit is contained in:
Marty Oehme 2024-07-15 21:38:05 +02:00
parent f384515737
commit b4730f6ea8
Signed by: Marty
GPG key ID: EDBF2ED917B2EF6A
22 changed files with 67 additions and 69 deletions

View file

@ -5378,7 +5378,7 @@ Table 1: ILO focus areas for inequality reduction
<p>To identify potential studies and create an initial sample, relevant terms for the clusters of world of work, inequality and policy interventions have been extracted from the existing reviews as well as the ILO definitions. Identified terms comprising the world of work can be found in <a href="#tbl-wow-terms" class="quarto-xref">Table 2</a>, with the search query requiring a term from the general column and one other column.</p>
<details class="code-fold">
<summary>Code</summary>
<div class="sourceCode cell-code" id="cb1"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a>terms_wow <span class="op">=</span> pd.read_csv(<span class="st">&quot;02-data/supplementary/terms_wow.csv&quot;</span>)</span>
<div class="sourceCode cell-code" id="cb1"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a>terms_wow <span class="op">=</span> pd.read_csv(<span class="st">&quot;data/supplementary/terms_wow.csv&quot;</span>)</span>
<span id="cb1-2"><a href="#cb1-2" aria-hidden="true" tabindex="-1"></a>md(tabulate(terms_wow.fillna(<span class="st">&quot;&quot;</span>), showindex<span class="op">=</span><span class="va">False</span>, headers<span class="op">=</span><span class="st">&quot;keys&quot;</span>, tablefmt<span class="op">=</span><span class="st">&quot;grid&quot;</span>))</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</details>
<div id="tbl-wow-terms" class="quarto-float anchored">
@ -5483,7 +5483,7 @@ Table 2: World of work term cluster
<p>For the policy intervention cluster, a variety of terms have been identified both from the ILO policy areas and guidelines as well as existing reviews, as can be seen in <a href="#tbl-intervention-terms" class="quarto-xref">Table 3</a>. Where terms have been identified from previous reviews outside the introduced ILO policy guidelines, there source has been included in the table. For the database query, a single term from the general category is required to be included in addition to one term from <em>any</em> of the remaining categories.</p>
<details class="code-fold">
<summary>Code</summary>
<div class="sourceCode cell-code" id="cb2"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a>terms_policy <span class="op">=</span> pd.read_csv(<span class="st">&quot;02-data/supplementary/terms_policy.csv&quot;</span>)</span>
<div class="sourceCode cell-code" id="cb2"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a>terms_policy <span class="op">=</span> pd.read_csv(<span class="st">&quot;data/supplementary/terms_policy.csv&quot;</span>)</span>
<span id="cb2-2"><a href="#cb2-2" aria-hidden="true" tabindex="-1"></a><span class="co"># different headers to include &#39;social norms&#39;</span></span>
<span id="cb2-3"><a href="#cb2-3" aria-hidden="true" tabindex="-1"></a>headers <span class="op">=</span> [<span class="st">&quot;General&quot;</span>, <span class="st">&quot;Institutional&quot;</span>, <span class="st">&quot;Structural&quot;</span>, <span class="st">&quot;Agency &amp; social norms&quot;</span>]</span>
<span id="cb2-4"><a href="#cb2-4" aria-hidden="true" tabindex="-1"></a>md(tabulate(terms_policy.fillna(<span class="st">&quot;&quot;</span>), showindex<span class="op">=</span><span class="va">False</span>, headers<span class="op">=</span>headers, tablefmt<span class="op">=</span><span class="st">&quot;grid&quot;</span>))</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
@ -5622,7 +5622,7 @@ Table 3: Policy intervention term cluster
<div class="cell" data-execution_count="4">
<details class="code-fold">
<summary>Code</summary>
<div class="sourceCode cell-code" id="cb3"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb3-1"><a href="#cb3-1" aria-hidden="true" tabindex="-1"></a>terms_inequality <span class="op">=</span> pd.read_csv(<span class="st">&quot;02-data/supplementary/terms_inequality.csv&quot;</span>)</span>
<div class="sourceCode cell-code" id="cb3"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb3-1"><a href="#cb3-1" aria-hidden="true" tabindex="-1"></a>terms_inequality <span class="op">=</span> pd.read_csv(<span class="st">&quot;data/supplementary/terms_inequality.csv&quot;</span>)</span>
<span id="cb3-2"><a href="#cb3-2" aria-hidden="true" tabindex="-1"></a>md(tabulate(terms_inequality.fillna(<span class="st">&quot;&quot;</span>), showindex<span class="op">=</span><span class="va">False</span>, headers<span class="op">=</span><span class="st">&quot;keys&quot;</span>, tablefmt<span class="op">=</span><span class="st">&quot;grid&quot;</span>))</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</details>
<div id="tbl-inequality-terms" class="cell quarto-float anchored" data-execution_count="4">
@ -5759,7 +5759,7 @@ Table 4: Inequality term cluster
<p>An overview of the respective criteria used for inclusion or exclusion can be found in <a href="#tbl-inclusion-criteria" class="quarto-xref">Table 5</a>. It restricts studies to those that comprise primary research published after 2000, with a focus on the narrowing criteria specified in <a href="#tbl-inclusion-criteria" class="quarto-xref">Table 5</a>.</p>
<details class="code-fold">
<summary>Code</summary>
<div class="sourceCode cell-code" id="cb4"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb4-1"><a href="#cb4-1" aria-hidden="true" tabindex="-1"></a>inclusion_criteria <span class="op">=</span> pd.read_csv(<span class="st">&quot;02-data/supplementary/inclusion-criteria.tsv&quot;</span>, sep<span class="op">=</span><span class="st">&quot;</span><span class="ch">\t</span><span class="st">&quot;</span>)</span>
<div class="sourceCode cell-code" id="cb4"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb4-1"><a href="#cb4-1" aria-hidden="true" tabindex="-1"></a>inclusion_criteria <span class="op">=</span> pd.read_csv(<span class="st">&quot;data/supplementary/inclusion-criteria.tsv&quot;</span>, sep<span class="op">=</span><span class="st">&quot;</span><span class="ch">\t</span><span class="st">&quot;</span>)</span>
<span id="cb4-2"><a href="#cb4-2" aria-hidden="true" tabindex="-1"></a>md(tabulate(inclusion_criteria, showindex<span class="op">=</span><span class="va">False</span>, headers<span class="op">=</span><span class="st">&quot;keys&quot;</span>, tablefmt<span class="op">=</span><span class="st">&quot;grid&quot;</span>))</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</details>
<div id="tbl-inclusion-criteria" class="quarto-float anchored">
@ -9294,7 +9294,7 @@ Figure 4: Available studies by primary type of intervention
<span id="cb8-8"><a href="#cb8-8" aria-hidden="true" tabindex="-1"></a><span class="kw">def</span> strength_for(val):</span>
<span id="cb8-9"><a href="#cb8-9" aria-hidden="true" tabindex="-1"></a> <span class="cf">return</span> <span class="bu">list</span>(study_strength_bins.keys())[<span class="bu">list</span>(study_strength_bins.values()).index(val)]</span>
<span id="cb8-10"><a href="#cb8-10" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb8-11"><a href="#cb8-11" aria-hidden="true" tabindex="-1"></a>findings_institutional <span class="op">=</span> pd.read_csv(<span class="st">&quot;02-data/supplementary/findings-institutional.csv&quot;</span>)</span>
<span id="cb8-11"><a href="#cb8-11" aria-hidden="true" tabindex="-1"></a>findings_institutional <span class="op">=</span> pd.read_csv(<span class="st">&quot;data/supplementary/findings-institutional.csv&quot;</span>)</span>
<span id="cb8-12"><a href="#cb8-12" aria-hidden="true" tabindex="-1"></a>fd_df <span class="op">=</span> validity.add_to_findings(findings_institutional, by_intervention, study_strength_bins)</span>
<span id="cb8-13"><a href="#cb8-13" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb8-14"><a href="#cb8-14" aria-hidden="true" tabindex="-1"></a>md(tabulate(fd_df[[<span class="st">&quot;area of policy&quot;</span>, <span class="st">&quot;internal_validity&quot;</span>, <span class="st">&quot;external_validity&quot;</span>, <span class="st">&quot;findings&quot;</span>, <span class="st">&quot;channels&quot;</span>]].fillna(<span class="st">&quot;&quot;</span>), showindex<span class="op">=</span><span class="va">False</span>, headers<span class="op">=</span>[<span class="st">&quot;area of policy&quot;</span>, <span class="st">&quot;internal strength&quot;</span>, <span class="st">&quot;external strength&quot;</span>, <span class="st">&quot;main findings&quot;</span>, <span class="st">&quot;channels&quot;</span>], tablefmt<span class="op">=</span><span class="st">&quot;grid&quot;</span>))</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
@ -9558,7 +9558,7 @@ Table 6: Summary of main findings for institutional policies
<summary>Code</summary>
<div class="sourceCode cell-code" id="cb9"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb9-1"><a href="#cb9-1" aria-hidden="true" tabindex="-1"></a><span class="im">from</span> src.model <span class="im">import</span> validity</span>
<span id="cb9-2"><a href="#cb9-2" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb9-3"><a href="#cb9-3" aria-hidden="true" tabindex="-1"></a>findings_structural <span class="op">=</span> pd.read_csv(<span class="st">&quot;02-data/supplementary/findings-structural.csv&quot;</span>)</span>
<span id="cb9-3"><a href="#cb9-3" aria-hidden="true" tabindex="-1"></a>findings_structural <span class="op">=</span> pd.read_csv(<span class="st">&quot;data/supplementary/findings-structural.csv&quot;</span>)</span>
<span id="cb9-4"><a href="#cb9-4" aria-hidden="true" tabindex="-1"></a>fd_df <span class="op">=</span> validity.add_to_findings(findings_structural, by_intervention, study_strength_bins)</span>
<span id="cb9-5"><a href="#cb9-5" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb9-6"><a href="#cb9-6" aria-hidden="true" tabindex="-1"></a>md(tabulate(fd_df[[<span class="st">&quot;area of policy&quot;</span>, <span class="st">&quot;internal_validity&quot;</span>, <span class="st">&quot;external_validity&quot;</span>, <span class="st">&quot;findings&quot;</span>, <span class="st">&quot;channels&quot;</span>]].fillna(<span class="st">&quot;&quot;</span>), showindex<span class="op">=</span><span class="va">False</span>, headers<span class="op">=</span>[<span class="st">&quot;area of policy&quot;</span>, <span class="st">&quot;internal strength&quot;</span>, <span class="st">&quot;external strength&quot;</span>, <span class="st">&quot;main findings&quot;</span>, <span class="st">&quot;channels&quot;</span>], tablefmt<span class="op">=</span><span class="st">&quot;grid&quot;</span>))</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
@ -9794,7 +9794,7 @@ Table 7: Summary of main findings for structural policies
<summary>Code</summary>
<div class="sourceCode cell-code" id="cb10"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb10-1"><a href="#cb10-1" aria-hidden="true" tabindex="-1"></a><span class="im">from</span> src.model <span class="im">import</span> validity</span>
<span id="cb10-2"><a href="#cb10-2" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb10-3"><a href="#cb10-3" aria-hidden="true" tabindex="-1"></a>findings_agency <span class="op">=</span> pd.read_csv(<span class="st">&quot;02-data/supplementary/findings-agency.csv&quot;</span>)</span>
<span id="cb10-3"><a href="#cb10-3" aria-hidden="true" tabindex="-1"></a>findings_agency <span class="op">=</span> pd.read_csv(<span class="st">&quot;data/supplementary/findings-agency.csv&quot;</span>)</span>
<span id="cb10-4"><a href="#cb10-4" aria-hidden="true" tabindex="-1"></a>fd_df <span class="op">=</span> validity.add_to_findings(findings_agency, by_intervention, study_strength_bins)</span>
<span id="cb10-5"><a href="#cb10-5" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb10-6"><a href="#cb10-6" aria-hidden="true" tabindex="-1"></a>md(tabulate(fd_df[[<span class="st">&quot;area of policy&quot;</span>, <span class="st">&quot;internal_validity&quot;</span>, <span class="st">&quot;external_validity&quot;</span>, <span class="st">&quot;findings&quot;</span>, <span class="st">&quot;channels&quot;</span>]].fillna(<span class="st">&quot;&quot;</span>), showindex<span class="op">=</span><span class="va">False</span>, headers<span class="op">=</span>[<span class="st">&quot;area of policy&quot;</span>, <span class="st">&quot;internal strength&quot;</span>, <span class="st">&quot;external strength&quot;</span>, <span class="st">&quot;main findings&quot;</span>, <span class="st">&quot;channels&quot;</span>], tablefmt<span class="op">=</span><span class="st">&quot;grid&quot;</span>))</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
@ -22545,7 +22545,7 @@ window.document.addEventListener("DOMContentLoaded", function (event) {
<span id="cb26-39"><a href="#cb26-39" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb26-40"><a href="#cb26-40" aria-hidden="true" tabindex="-1"></a>sns.set_style(<span class="st">&quot;whitegrid&quot;</span>)</span>
<span id="cb26-41"><a href="#cb26-41" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb26-42"><a href="#cb26-42" aria-hidden="true" tabindex="-1"></a>DATA_DIR<span class="op">=</span>Path(<span class="st">&quot;./02-data&quot;</span>)</span>
<span id="cb26-42"><a href="#cb26-42" aria-hidden="true" tabindex="-1"></a>DATA_DIR<span class="op">=</span>Path(<span class="st">&quot;./data&quot;</span>)</span>
<span id="cb26-43"><a href="#cb26-43" aria-hidden="true" tabindex="-1"></a>RAW_DATA<span class="op">=</span>DATA_DIR.joinpath(<span class="st">&quot;raw&quot;</span>)</span>
<span id="cb26-44"><a href="#cb26-44" aria-hidden="true" tabindex="-1"></a>WORKING_DATA<span class="op">=</span>DATA_DIR.joinpath(<span class="st">&quot;intermediate&quot;</span>)</span>
<span id="cb26-45"><a href="#cb26-45" aria-hidden="true" tabindex="-1"></a>PROCESSED_DATA<span class="op">=</span>DATA_DIR.joinpath(<span class="st">&quot;processed&quot;</span>)</span>
@ -22835,7 +22835,7 @@ window.document.addEventListener("DOMContentLoaded", function (event) {
<span id="cb26-331"><a href="#cb26-331" aria-hidden="true" tabindex="-1"></a><span class="in">```{python}</span></span>
<span id="cb26-332"><a href="#cb26-332" aria-hidden="true" tabindex="-1"></a><span class="co">#| label: tbl-wow-terms</span></span>
<span id="cb26-333"><a href="#cb26-333" aria-hidden="true" tabindex="-1"></a><span class="co">#| tbl-cap: World of work term cluster</span></span>
<span id="cb26-334"><a href="#cb26-334" aria-hidden="true" tabindex="-1"></a>terms_wow <span class="op">=</span> pd.read_csv(<span class="st">&quot;02-data/supplementary/terms_wow.csv&quot;</span>)</span>
<span id="cb26-334"><a href="#cb26-334" aria-hidden="true" tabindex="-1"></a>terms_wow <span class="op">=</span> pd.read_csv(<span class="st">&quot;data/supplementary/terms_wow.csv&quot;</span>)</span>
<span id="cb26-335"><a href="#cb26-335" aria-hidden="true" tabindex="-1"></a>md(tabulate(terms_wow.fillna(<span class="st">&quot;&quot;</span>), showindex<span class="op">=</span><span class="va">False</span>, headers<span class="op">=</span><span class="st">&quot;keys&quot;</span>, tablefmt<span class="op">=</span><span class="st">&quot;grid&quot;</span>))</span>
<span id="cb26-336"><a href="#cb26-336" aria-hidden="true" tabindex="-1"></a><span class="in">```</span></span>
<span id="cb26-337"><a href="#cb26-337" aria-hidden="true" tabindex="-1"></a></span>
@ -22857,7 +22857,7 @@ window.document.addEventListener("DOMContentLoaded", function (event) {
<span id="cb26-355"><a href="#cb26-355" aria-hidden="true" tabindex="-1"></a><span class="in">```{python}</span></span>
<span id="cb26-356"><a href="#cb26-356" aria-hidden="true" tabindex="-1"></a><span class="co">#| label: tbl-intervention-terms</span></span>
<span id="cb26-357"><a href="#cb26-357" aria-hidden="true" tabindex="-1"></a><span class="co">#| tbl-cap: Intervention term cluster</span></span>
<span id="cb26-358"><a href="#cb26-358" aria-hidden="true" tabindex="-1"></a>terms_policy <span class="op">=</span> pd.read_csv(<span class="st">&quot;02-data/supplementary/terms_policy.csv&quot;</span>)</span>
<span id="cb26-358"><a href="#cb26-358" aria-hidden="true" tabindex="-1"></a>terms_policy <span class="op">=</span> pd.read_csv(<span class="st">&quot;data/supplementary/terms_policy.csv&quot;</span>)</span>
<span id="cb26-359"><a href="#cb26-359" aria-hidden="true" tabindex="-1"></a><span class="co"># different headers to include &#39;social norms&#39;</span></span>
<span id="cb26-360"><a href="#cb26-360" aria-hidden="true" tabindex="-1"></a>headers <span class="op">=</span> [<span class="st">&quot;General&quot;</span>, <span class="st">&quot;Institutional&quot;</span>, <span class="st">&quot;Structural&quot;</span>, <span class="st">&quot;Agency &amp; social norms&quot;</span>]</span>
<span id="cb26-361"><a href="#cb26-361" aria-hidden="true" tabindex="-1"></a>md(tabulate(terms_policy.fillna(<span class="st">&quot;&quot;</span>), showindex<span class="op">=</span><span class="va">False</span>, headers<span class="op">=</span>headers, tablefmt<span class="op">=</span><span class="st">&quot;grid&quot;</span>))</span>
@ -22873,7 +22873,7 @@ window.document.addEventListener("DOMContentLoaded", function (event) {
<span id="cb26-373"><a href="#cb26-373" aria-hidden="true" tabindex="-1"></a><span class="in">```{python}</span></span>
<span id="cb26-374"><a href="#cb26-374" aria-hidden="true" tabindex="-1"></a><span class="co">#| label: tbl-inequality-terms</span></span>
<span id="cb26-375"><a href="#cb26-375" aria-hidden="true" tabindex="-1"></a><span class="co">#| tbl-cap: Inequality term cluster</span></span>
<span id="cb26-376"><a href="#cb26-376" aria-hidden="true" tabindex="-1"></a>terms_inequality <span class="op">=</span> pd.read_csv(<span class="st">&quot;02-data/supplementary/terms_inequality.csv&quot;</span>)</span>
<span id="cb26-376"><a href="#cb26-376" aria-hidden="true" tabindex="-1"></a>terms_inequality <span class="op">=</span> pd.read_csv(<span class="st">&quot;data/supplementary/terms_inequality.csv&quot;</span>)</span>
<span id="cb26-377"><a href="#cb26-377" aria-hidden="true" tabindex="-1"></a>md(tabulate(terms_inequality.fillna(<span class="st">&quot;&quot;</span>), showindex<span class="op">=</span><span class="va">False</span>, headers<span class="op">=</span><span class="st">&quot;keys&quot;</span>, tablefmt<span class="op">=</span><span class="st">&quot;grid&quot;</span>))</span>
<span id="cb26-378"><a href="#cb26-378" aria-hidden="true" tabindex="-1"></a><span class="in">```</span></span>
<span id="cb26-379"><a href="#cb26-379" aria-hidden="true" tabindex="-1"></a></span>
@ -22897,7 +22897,7 @@ window.document.addEventListener("DOMContentLoaded", function (event) {
<span id="cb26-399"><a href="#cb26-399" aria-hidden="true" tabindex="-1"></a><span class="in">```{python}</span></span>
<span id="cb26-400"><a href="#cb26-400" aria-hidden="true" tabindex="-1"></a><span class="co">#| label: tbl-inclusion-criteria</span></span>
<span id="cb26-401"><a href="#cb26-401" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb26-402"><a href="#cb26-402" aria-hidden="true" tabindex="-1"></a>inclusion_criteria <span class="op">=</span> pd.read_csv(<span class="st">&quot;02-data/supplementary/inclusion-criteria.tsv&quot;</span>, sep<span class="op">=</span><span class="st">&quot;</span><span class="ch">\t</span><span class="st">&quot;</span>)</span>
<span id="cb26-402"><a href="#cb26-402" aria-hidden="true" tabindex="-1"></a>inclusion_criteria <span class="op">=</span> pd.read_csv(<span class="st">&quot;data/supplementary/inclusion-criteria.tsv&quot;</span>, sep<span class="op">=</span><span class="st">&quot;</span><span class="ch">\t</span><span class="st">&quot;</span>)</span>
<span id="cb26-403"><a href="#cb26-403" aria-hidden="true" tabindex="-1"></a>md(tabulate(inclusion_criteria, showindex<span class="op">=</span><span class="va">False</span>, headers<span class="op">=</span><span class="st">&quot;keys&quot;</span>, tablefmt<span class="op">=</span><span class="st">&quot;grid&quot;</span>))</span>
<span id="cb26-404"><a href="#cb26-404" aria-hidden="true" tabindex="-1"></a><span class="in">```</span></span>
<span id="cb26-405"><a href="#cb26-405" aria-hidden="true" tabindex="-1"></a></span>
@ -22948,7 +22948,7 @@ window.document.addEventListener("DOMContentLoaded", function (event) {
<span id="cb26-452"><a href="#cb26-452" aria-hidden="true" tabindex="-1"></a>nr_extraction_done <span class="op">=</span> <span class="bu">len</span>([<span class="dv">1</span> <span class="cf">for</span> kw <span class="kw">in</span> all_keywords <span class="cf">if</span> <span class="st">&quot;done::extracted&quot;</span> <span class="kw">in</span> kw])</span>
<span id="cb26-453"><a href="#cb26-453" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb26-454"><a href="#cb26-454" aria-hidden="true" tabindex="-1"></a>t3 <span class="op">=</span> <span class="st">&quot;`&quot;</span> <span class="op">*</span> <span class="dv">3</span></span>
<span id="cb26-455"><a href="#cb26-455" aria-hidden="true" tabindex="-1"></a><span class="co"># </span><span class="al">FIXME</span><span class="co"> use 02-data/supplementary undeduplciated counts to get database starting and snowballing counts</span></span>
<span id="cb26-455"><a href="#cb26-455" aria-hidden="true" tabindex="-1"></a><span class="co"># </span><span class="al">FIXME</span><span class="co"> use data/supplementary undeduplciated counts to get database starting and snowballing counts</span></span>
<span id="cb26-456"><a href="#cb26-456" aria-hidden="true" tabindex="-1"></a><span class="co"># from: https://github.com/quarto-dev/quarto-cli/discussions/6508</span></span>
<span id="cb26-457"><a href="#cb26-457" aria-hidden="true" tabindex="-1"></a><span class="bu">print</span>(<span class="ss">f&quot;&quot;&quot;</span></span>
<span id="cb26-458"><a href="#cb26-458" aria-hidden="true" tabindex="-1"></a><span class="ss">```</span><span class="sc">{</span>mermaid<span class="sc">}</span></span>
@ -23145,7 +23145,7 @@ window.document.addEventListener("DOMContentLoaded", function (event) {
<span id="cb26-659"><a href="#cb26-659" aria-hidden="true" tabindex="-1"></a><span class="kw">def</span> strength_for(val):</span>
<span id="cb26-660"><a href="#cb26-660" aria-hidden="true" tabindex="-1"></a> <span class="cf">return</span> <span class="bu">list</span>(study_strength_bins.keys())[<span class="bu">list</span>(study_strength_bins.values()).index(val)]</span>
<span id="cb26-661"><a href="#cb26-661" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb26-662"><a href="#cb26-662" aria-hidden="true" tabindex="-1"></a>findings_institutional <span class="op">=</span> pd.read_csv(<span class="st">&quot;02-data/supplementary/findings-institutional.csv&quot;</span>)</span>
<span id="cb26-662"><a href="#cb26-662" aria-hidden="true" tabindex="-1"></a>findings_institutional <span class="op">=</span> pd.read_csv(<span class="st">&quot;data/supplementary/findings-institutional.csv&quot;</span>)</span>
<span id="cb26-663"><a href="#cb26-663" aria-hidden="true" tabindex="-1"></a>fd_df <span class="op">=</span> validity.add_to_findings(findings_institutional, by_intervention, study_strength_bins)</span>
<span id="cb26-664"><a href="#cb26-664" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb26-665"><a href="#cb26-665" aria-hidden="true" tabindex="-1"></a>md(tabulate(fd_df[[<span class="st">&quot;area of policy&quot;</span>, <span class="st">&quot;internal_validity&quot;</span>, <span class="st">&quot;external_validity&quot;</span>, <span class="st">&quot;findings&quot;</span>, <span class="st">&quot;channels&quot;</span>]].fillna(<span class="st">&quot;&quot;</span>), showindex<span class="op">=</span><span class="va">False</span>, headers<span class="op">=</span>[<span class="st">&quot;area of policy&quot;</span>, <span class="st">&quot;internal strength&quot;</span>, <span class="st">&quot;external strength&quot;</span>, <span class="st">&quot;main findings&quot;</span>, <span class="st">&quot;channels&quot;</span>], tablefmt<span class="op">=</span><span class="st">&quot;grid&quot;</span>))</span>
@ -23378,7 +23378,7 @@ window.document.addEventListener("DOMContentLoaded", function (event) {
<span id="cb26-894"><a href="#cb26-894" aria-hidden="true" tabindex="-1"></a><span class="co">#| label: tbl-findings-structural</span></span>
<span id="cb26-895"><a href="#cb26-895" aria-hidden="true" tabindex="-1"></a><span class="im">from</span> src.model <span class="im">import</span> validity</span>
<span id="cb26-896"><a href="#cb26-896" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb26-897"><a href="#cb26-897" aria-hidden="true" tabindex="-1"></a>findings_structural <span class="op">=</span> pd.read_csv(<span class="st">&quot;02-data/supplementary/findings-structural.csv&quot;</span>)</span>
<span id="cb26-897"><a href="#cb26-897" aria-hidden="true" tabindex="-1"></a>findings_structural <span class="op">=</span> pd.read_csv(<span class="st">&quot;data/supplementary/findings-structural.csv&quot;</span>)</span>
<span id="cb26-898"><a href="#cb26-898" aria-hidden="true" tabindex="-1"></a>fd_df <span class="op">=</span> validity.add_to_findings(findings_structural, by_intervention, study_strength_bins)</span>
<span id="cb26-899"><a href="#cb26-899" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb26-900"><a href="#cb26-900" aria-hidden="true" tabindex="-1"></a>md(tabulate(fd_df[[<span class="st">&quot;area of policy&quot;</span>, <span class="st">&quot;internal_validity&quot;</span>, <span class="st">&quot;external_validity&quot;</span>, <span class="st">&quot;findings&quot;</span>, <span class="st">&quot;channels&quot;</span>]].fillna(<span class="st">&quot;&quot;</span>), showindex<span class="op">=</span><span class="va">False</span>, headers<span class="op">=</span>[<span class="st">&quot;area of policy&quot;</span>, <span class="st">&quot;internal strength&quot;</span>, <span class="st">&quot;external strength&quot;</span>, <span class="st">&quot;main findings&quot;</span>, <span class="st">&quot;channels&quot;</span>], tablefmt<span class="op">=</span><span class="st">&quot;grid&quot;</span>))</span>
@ -23615,7 +23615,7 @@ window.document.addEventListener("DOMContentLoaded", function (event) {
<span id="cb26-1133"><a href="#cb26-1133" aria-hidden="true" tabindex="-1"></a><span class="co">#| label: tbl-findings-agency</span></span>
<span id="cb26-1134"><a href="#cb26-1134" aria-hidden="true" tabindex="-1"></a><span class="im">from</span> src.model <span class="im">import</span> validity</span>
<span id="cb26-1135"><a href="#cb26-1135" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb26-1136"><a href="#cb26-1136" aria-hidden="true" tabindex="-1"></a>findings_agency <span class="op">=</span> pd.read_csv(<span class="st">&quot;02-data/supplementary/findings-agency.csv&quot;</span>)</span>
<span id="cb26-1136"><a href="#cb26-1136" aria-hidden="true" tabindex="-1"></a>findings_agency <span class="op">=</span> pd.read_csv(<span class="st">&quot;data/supplementary/findings-agency.csv&quot;</span>)</span>
<span id="cb26-1137"><a href="#cb26-1137" aria-hidden="true" tabindex="-1"></a>fd_df <span class="op">=</span> validity.add_to_findings(findings_agency, by_intervention, study_strength_bins)</span>
<span id="cb26-1138"><a href="#cb26-1138" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb26-1139"><a href="#cb26-1139" aria-hidden="true" tabindex="-1"></a>md(tabulate(fd_df[[<span class="st">&quot;area of policy&quot;</span>, <span class="st">&quot;internal_validity&quot;</span>, <span class="st">&quot;external_validity&quot;</span>, <span class="st">&quot;findings&quot;</span>, <span class="st">&quot;channels&quot;</span>]].fillna(<span class="st">&quot;&quot;</span>), showindex<span class="op">=</span><span class="va">False</span>, headers<span class="op">=</span>[<span class="st">&quot;area of policy&quot;</span>, <span class="st">&quot;internal strength&quot;</span>, <span class="st">&quot;external strength&quot;</span>, <span class="st">&quot;main findings&quot;</span>, <span class="st">&quot;channels&quot;</span>], tablefmt<span class="op">=</span><span class="st">&quot;grid&quot;</span>))</span>