chore(repo): Expose dataframes directly from source
This commit is contained in:
parent
f61da38837
commit
8f64604def
3 changed files with 90 additions and 43 deletions
13
src/__init__.py
Normal file
13
src/__init__.py
Normal file
|
@ -0,0 +1,13 @@
|
|||
from src.process.generate_dataframes import bib_sample, bib_sample_db_raw, df_by_intervention, df_main, df_validities
|
||||
|
||||
# each observation in a single dataframe
|
||||
df = df_main()
|
||||
|
||||
# all observations but split per individual intervention
|
||||
df_by_intervention = df_by_intervention()
|
||||
|
||||
# Calc study validities (internal & external separated)
|
||||
validities = df_validities()
|
||||
|
||||
bib_sample = bib_sample()
|
||||
bib_sample_db_raw = bib_sample_db_raw()
|
|
@ -1,8 +1,8 @@
|
|||
from src.process.generate_dataframes import bib_sample, bib_sample_raw_db
|
||||
from src import bib_sample, bib_sample_db_raw
|
||||
|
||||
|
||||
class PrismaNumbers:
|
||||
raw_db = len(bib_sample_raw_db.entries)
|
||||
raw_db = len(bib_sample_db_raw.entries)
|
||||
raw_snowball = 2240
|
||||
|
||||
# list of all keywords (semicolon-delimited string) for each entry in sample
|
||||
|
@ -43,7 +43,7 @@ class PrismaNumbers:
|
|||
final_extracted = len([1 for kw in all_kw if "done::extracted" in kw])
|
||||
|
||||
|
||||
del bib_sample, bib_sample_raw_db
|
||||
del bib_sample, bib_sample_db_raw
|
||||
|
||||
if __name__ == "__main__":
|
||||
prisma = PrismaNumbers()
|
||||
|
|
|
@ -1,34 +1,57 @@
|
|||
from pathlib import Path
|
||||
import re
|
||||
|
||||
import pandas as pd
|
||||
from bibtexparser import Library
|
||||
|
||||
import src.globals as g
|
||||
from src.extract import load_data as load
|
||||
from src.model import validity
|
||||
|
||||
## Creates 3 important data structures:
|
||||
# df: The main dataframe containing all final sample studies
|
||||
# df_by_intervention: The same dataframe but split up by individual interventions per study
|
||||
# validities: The studies with their validities, containing only quasi-/experimental studies
|
||||
|
||||
from src.process import add_metadata as meta
|
||||
|
||||
# the complete library of sampled (and working) literature
|
||||
def bib_sample() -> Library:
|
||||
return meta.bib_library_from_file(g.REFERENCE_DATA.joinpath("zotero-library.bib"))
|
||||
|
||||
|
||||
# raw database-search results
|
||||
bib_sample_raw_db = meta.bib_library_from_dir(g.REFERENCE_DATA.joinpath("db"))
|
||||
# the complete library of sampled (and working) literature
|
||||
bib_sample = meta.bib_library_from_file(g.REFERENCE_DATA.joinpath("zotero-library.bib"))
|
||||
def bib_sample_db_raw() -> Library:
|
||||
return meta.bib_library_from_dir(g.REFERENCE_DATA.joinpath("db"))
|
||||
|
||||
# load relevant studies
|
||||
from src.extract import load_data as load
|
||||
|
||||
# each observation in a single dataframe
|
||||
def df_main() -> pd.DataFrame:
|
||||
df = meta.observations_with_metadata_df(
|
||||
raw_observations=load.from_yml(g.EXTRACTED_DATA),
|
||||
study_metadata = meta.bib_metadata_df(bib_sample),
|
||||
country_groups = meta.country_groups_df(Path(f"{g.SUPPLEMENTARY_DATA}/wb-country-groupings.xlsx")),
|
||||
study_metadata=meta.bib_metadata_df(bib_sample()),
|
||||
country_groups=meta.country_groups_df(
|
||||
g.SUPPLEMENTARY_DATA.joinpath("wb-country-groupings.xlsx")
|
||||
),
|
||||
)
|
||||
return df
|
||||
|
||||
# all observations but split per individual intervention
|
||||
|
||||
from src.process import add_metadata as meta
|
||||
|
||||
|
||||
def df_by_intervention() -> pd.DataFrame:
|
||||
df_by_intervention = (
|
||||
df
|
||||
df_main()
|
||||
.fillna("")
|
||||
.groupby(["author", "year", "title", "design", "method", "representativeness", "citation"])
|
||||
.groupby(
|
||||
[
|
||||
"author",
|
||||
"year",
|
||||
"title",
|
||||
"design",
|
||||
"method",
|
||||
"representativeness",
|
||||
"citation",
|
||||
]
|
||||
)
|
||||
.agg(
|
||||
{
|
||||
"intervention": lambda _col: "; ".join(_col),
|
||||
|
@ -38,19 +61,30 @@ df_by_intervention = (
|
|||
.drop_duplicates()
|
||||
.assign(
|
||||
intervention=lambda _df: _df["intervention"].apply(
|
||||
lambda _cell: set([x.strip() for x in re.sub(r"\(.*\)", "", _cell).split(";")])
|
||||
lambda _cell: set(
|
||||
[x.strip() for x in re.sub(r"\(.*\)", "", _cell).split(";")]
|
||||
)
|
||||
),
|
||||
)
|
||||
.explode("intervention")
|
||||
)
|
||||
return df_by_intervention
|
||||
|
||||
# Calc study validities (internal & external separated)
|
||||
from src.model import validity
|
||||
|
||||
validities = validity.calculate(df_by_intervention)
|
||||
validities["identifier"] = validities["author"].str.replace(r',.*$', '', regex=True) + " (" + validities["year"].astype(str) + ")"
|
||||
validities = validities.loc[(validities["design"] == "quasi-experimental") | (validities["design"] == "experimental")]
|
||||
def df_validities() -> pd.DataFrame:
|
||||
validities = validity.calculate(df_by_intervention())
|
||||
validities["identifier"] = (
|
||||
validities["author"].str.replace(r",.*$", "", regex=True)
|
||||
+ " ("
|
||||
+ validities["year"].astype(str)
|
||||
+ ")"
|
||||
)
|
||||
validities = validities.loc[
|
||||
(validities["design"] == "quasi-experimental")
|
||||
| (validities["design"] == "experimental")
|
||||
]
|
||||
# validities["external_validity"] = validities["external_validity"].astype('category')
|
||||
validities["internal_validity"] = validities["internal_validity"].astype('category')
|
||||
validities["internal_validity"] = validities["internal_validity"].astype("category")
|
||||
validities["External Validity"] = validities["external_validity"]
|
||||
validities["Internal Validity"] = validities["internal_validity"]
|
||||
return validities
|
||||
|
|
Loading…
Reference in a new issue