2022-08-20 14:44:25 +00:00
|
|
|
```{python}
|
|
|
|
#| echo: false
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
def prepare_plot_colors():
|
|
|
|
# "Tableau 20" colors as RGB.
|
|
|
|
colors = [(31, 119, 180), (174, 199, 232), (255, 127, 14), (255, 187, 120),
|
|
|
|
(44, 160, 44), (152, 223, 138), (214, 39, 40), (255, 152, 150),
|
|
|
|
(148, 103, 189), (197, 176, 213), (140, 86, 75), (196, 156, 148),
|
|
|
|
(227, 119, 194), (247, 182, 210), (127, 127, 127), (199, 199, 199),
|
|
|
|
(188, 189, 34), (219, 219, 141), (23, 190, 207), (158, 218, 229)]
|
|
|
|
|
|
|
|
# Scale RGB values to the [0, 1] range for matplotlib
|
|
|
|
for i in range(len(colors)):
|
|
|
|
r, g, b = colors[i]
|
|
|
|
colors[i] = (r / 255., g / 255., b / 255.)
|
|
|
|
return colors
|
|
|
|
|
|
|
|
colors=prepare_plot_colors()
|
|
|
|
```
|
|
|
|
|
|
|
|
```{python}
|
|
|
|
#| echo: false
|
|
|
|
import openpyxl
|
|
|
|
import pandas as pd
|
|
|
|
|
|
|
|
df = pd.read_csv('data/cleaned/UNU-WIDER-WIID/WIID-30JUN2022_cty-select.csv', index_col="id", parse_dates=True)
|
|
|
|
```
|
|
|
|
|
|
|
|
```{python}
|
|
|
|
#| echo: false
|
2022-09-02 14:20:43 +00:00
|
|
|
df = df.loc[df['year'] > 1990]
|
2022-08-20 14:44:25 +00:00
|
|
|
ben = df.loc[df['c3'] == "BEN"]
|
|
|
|
dji = df.loc[df['c3'] == "DJI"]
|
|
|
|
uga = df.loc[df['c3'] == "UGA"]
|
|
|
|
vnm = df.loc[df['c3'] == "VNM"]
|
|
|
|
```
|
|
|
|
|
|
|
|
```{python}
|
|
|
|
# Set up the data extraction and figure drawing functions
|
|
|
|
import plotly.express as px
|
|
|
|
import plotly.io as pio
|
|
|
|
|
|
|
|
def gini_plot(country_df):
|
|
|
|
if svg_render:
|
|
|
|
pio.renderers.default = "png"
|
|
|
|
|
2022-09-02 08:02:45 +00:00
|
|
|
fig = px.line(country_df, x="year", y="gini", markers=True, labels={"year": "Year", "gini": "Gini coefficient"}, template="seaborn", range_y=[0,100])
|
2022-08-20 14:44:25 +00:00
|
|
|
fig.update_traces(marker_size=10)
|
|
|
|
fig.show()
|
|
|
|
|
|
|
|
def plot_consumption_gini_percapita(country_df):
|
|
|
|
gni_cnsmpt = country_df[country_df['resource'].str.contains("Consumption")]
|
|
|
|
gni_cnsmpt_percapita = gni_cnsmpt[gni_cnsmpt['scale'].str.contains("Per capita")]
|
|
|
|
gini_plot(gni_cnsmpt_percapita)
|
|
|
|
|
|
|
|
def plot_consumption_gini_percapita_ruralurban(country_df):
|
|
|
|
gni_cnsmpt = country_df[country_df['resource'].str.contains("Consumption")]
|
|
|
|
gni_cnsmpt = gni_cnsmpt[gni_cnsmpt['scale'].str.contains("Per capita")]
|
|
|
|
gni_cnsmpt = gni_cnsmpt[gni_cnsmpt['source'].str.contains("World Bank")]
|
|
|
|
gni_cnsmpt = gni_cnsmpt[gni_cnsmpt['areacovr'].str.contains("All")]
|
|
|
|
gini_plot(gni_cnsmpt)
|
|
|
|
```
|
|
|
|
|
2022-09-06 10:17:20 +00:00
|
|
|
```{python}
|
|
|
|
## Set up functions to grab development aids by type of donating body
|
|
|
|
## ODA donor type map, see DAC code sheet xlsx
|
|
|
|
donortypes = {
|
|
|
|
1: 'dac',
|
|
|
|
2: 'dac',
|
|
|
|
3: 'dac',
|
|
|
|
4: 'dac',
|
|
|
|
5: 'dac',
|
|
|
|
6: 'dac',
|
|
|
|
7: 'dac',
|
|
|
|
8: 'dac',
|
|
|
|
9: 'dac',
|
|
|
|
10: 'dac',
|
|
|
|
11: 'dac',
|
|
|
|
12: 'dac',
|
|
|
|
18: 'dac',
|
|
|
|
20: 'dac',
|
|
|
|
21: 'dac',
|
|
|
|
22: 'dac',
|
|
|
|
40: 'dac',
|
|
|
|
50: 'dac',
|
|
|
|
61: 'dac',
|
|
|
|
68: 'dac',
|
|
|
|
69: 'dac',
|
|
|
|
75: 'dac',
|
|
|
|
76: 'dac',
|
|
|
|
301: 'dac',
|
|
|
|
302: 'dac',
|
|
|
|
701: 'dac',
|
|
|
|
742: 'dac',
|
|
|
|
801: 'dac',
|
|
|
|
820: 'dac',
|
|
|
|
918: 'dac',
|
|
|
|
104: 'multilat',
|
|
|
|
807: 'multilat',
|
|
|
|
811: 'multilat',
|
|
|
|
812: 'multilat',
|
|
|
|
901: 'multilat',
|
|
|
|
902: 'multilat',
|
|
|
|
903: 'multilat',
|
|
|
|
905: 'multilat',
|
|
|
|
906: 'multilat',
|
|
|
|
907: 'multilat',
|
|
|
|
909: 'multilat',
|
|
|
|
913: 'multilat',
|
|
|
|
914: 'multilat',
|
|
|
|
915: 'multilat',
|
|
|
|
921: 'multilat',
|
|
|
|
923: 'multilat',
|
|
|
|
926: 'multilat',
|
|
|
|
928: 'multilat',
|
|
|
|
932: 'multilat',
|
|
|
|
940: 'multilat',
|
|
|
|
944: 'multilat',
|
|
|
|
948: 'multilat',
|
|
|
|
951: 'multilat',
|
|
|
|
952: 'multilat',
|
|
|
|
953: 'multilat',
|
|
|
|
954: 'multilat',
|
|
|
|
956: 'multilat',
|
|
|
|
958: 'multilat',
|
|
|
|
959: 'multilat',
|
|
|
|
960: 'multilat',
|
|
|
|
963: 'multilat',
|
|
|
|
964: 'multilat',
|
|
|
|
966: 'multilat',
|
|
|
|
967: 'multilat',
|
|
|
|
971: 'multilat',
|
|
|
|
974: 'multilat',
|
|
|
|
976: 'multilat',
|
|
|
|
978: 'multilat',
|
|
|
|
979: 'multilat',
|
|
|
|
980: 'multilat',
|
|
|
|
981: 'multilat',
|
|
|
|
982: 'multilat',
|
|
|
|
983: 'multilat',
|
|
|
|
988: 'multilat',
|
|
|
|
990: 'multilat',
|
|
|
|
992: 'multilat',
|
|
|
|
997: 'multilat',
|
|
|
|
1011: 'multilat',
|
|
|
|
1012: 'multilat',
|
|
|
|
1013: 'multilat',
|
|
|
|
1014: 'multilat',
|
|
|
|
1015: 'multilat',
|
|
|
|
1016: 'multilat',
|
|
|
|
1017: 'multilat',
|
|
|
|
1018: 'multilat',
|
|
|
|
1019: 'multilat',
|
|
|
|
1020: 'multilat',
|
|
|
|
1023: 'multilat',
|
|
|
|
1024: 'multilat',
|
|
|
|
1025: 'multilat',
|
|
|
|
1037: 'multilat',
|
|
|
|
1038: 'multilat',
|
|
|
|
1311: 'multilat',
|
|
|
|
1312: 'multilat',
|
|
|
|
1313: 'multilat',
|
|
|
|
30: 'nondac',
|
|
|
|
45: 'nondac',
|
|
|
|
55: 'nondac',
|
|
|
|
62: 'nondac',
|
|
|
|
70: 'nondac',
|
|
|
|
72: 'nondac',
|
|
|
|
77: 'nondac',
|
|
|
|
82: 'nondac',
|
|
|
|
83: 'nondac',
|
|
|
|
84: 'nondac',
|
|
|
|
87: 'nondac',
|
|
|
|
130: 'nondac',
|
|
|
|
133: 'nondac',
|
|
|
|
358: 'nondac',
|
|
|
|
543: 'nondac',
|
|
|
|
546: 'nondac',
|
|
|
|
552: 'nondac',
|
|
|
|
561: 'nondac',
|
|
|
|
566: 'nondac',
|
|
|
|
576: 'nondac',
|
|
|
|
611: 'nondac',
|
|
|
|
613: 'nondac',
|
|
|
|
732: 'nondac',
|
|
|
|
764: 'nondac',
|
|
|
|
765: 'nondac',
|
|
|
|
1601: 'private',
|
|
|
|
1602: 'private',
|
|
|
|
1603: 'private',
|
|
|
|
1604: 'private',
|
|
|
|
1605: 'private',
|
|
|
|
1606: 'private',
|
|
|
|
1607: 'private',
|
|
|
|
1608: 'private',
|
|
|
|
1609: 'private',
|
|
|
|
1610: 'private',
|
|
|
|
1611: 'private',
|
|
|
|
1612: 'private',
|
|
|
|
1613: 'private',
|
|
|
|
1614: 'private',
|
|
|
|
1615: 'private',
|
|
|
|
1616: 'private',
|
|
|
|
1617: 'private',
|
|
|
|
1618: 'private',
|
|
|
|
1619: 'private',
|
|
|
|
1620: 'private',
|
|
|
|
1621: 'private',
|
|
|
|
1622: 'private',
|
|
|
|
1623: 'private',
|
|
|
|
1624: 'private',
|
|
|
|
1625: 'private',
|
|
|
|
1626: 'private',
|
|
|
|
1627: 'private',
|
|
|
|
1628: 'private',
|
|
|
|
1629: 'private',
|
|
|
|
1630: 'private',
|
|
|
|
1631: 'private',
|
|
|
|
1632: 'private',
|
|
|
|
1633: 'private',
|
|
|
|
1634: 'private',
|
|
|
|
1635: 'private',
|
|
|
|
1636: 'private',
|
|
|
|
1637: 'private',
|
|
|
|
1638: 'private',
|
|
|
|
1639: 'private',
|
|
|
|
}
|
|
|
|
|
|
|
|
def totals_by_donortype(oda_frame):
|
|
|
|
totals = oda_frame.loc[
|
|
|
|
(df['RECIPIENT'] == 236) &
|
|
|
|
(df['SECTOR'] == 1000) &
|
|
|
|
(df['FLOW'] == 100) &
|
|
|
|
(df['CHANNEL'] == 100) &
|
|
|
|
(df['AMOUNTTYPE'] == 'D') &
|
|
|
|
(df['FLOWTYPE'] == 112) &
|
|
|
|
(df['AIDTYPE'] == "100") # contains mixed int and string representations
|
|
|
|
]
|
|
|
|
donortotals = totals.copy()
|
|
|
|
donortotals["Donortype"] = donortotals["DONOR"].map(donortypes)
|
|
|
|
return donortotals
|
|
|
|
```
|