Create modelling processes

This commit is contained in:
Marty Oehme 2023-08-20 14:29:36 +02:00
parent 6cf1da6ea2
commit cb4b633c05
Signed by: Marty
GPG key ID: EDBF2ED917B2EF6A
3 changed files with 163 additions and 9 deletions

View file

@ -1,5 +1,6 @@
import locale
from pathlib import Path
import subprocess
from whisper import Whisper
from pyannote.audio import Pipeline
import torch
@ -12,17 +13,37 @@ def prep() -> None:
# download and add ffmpeg to env
static_ffmpeg.add_paths()
def audiofile(drive_url: str, path: str) -> Path | None:
def audiofile(drive_url: str, path: Path) -> Path | None:
if not drive_url:
return None
fn = Path.joinpath(Path(path), "interview")
gdown.download(drive_url, str(fn))
gdown.download(drive_url, "infile")
fn = Path.joinpath(path, "interview.wav")
subprocess.run(
[
"ffmpeg",
"-i",
"{repr(video_path)}",
"-vn",
"-acodec",
"pcm_s16le",
"-ar",
"16000",
"-ac",
"1",
"-y",
fn,
]
)
return fn
def diarization(access_token: str | None) -> Pipeline:
return Pipeline.from_pretrained(
pipeline = Pipeline.from_pretrained(
"pyannote/speaker-diarization", use_auth_token=access_token
)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
return pipeline.to(device)
def whisper() -> Whisper:

110
verbanote/process.py Normal file
View file

@ -0,0 +1,110 @@
import os
import re
import json
from pathlib import Path
from pyannote.audio import Pipeline
from pydub import AudioSegment
from whisper import Whisper
MILLISECONDS_TO_SPACE = 2000
def diarize(audiofile: Path, pipeline: Pipeline, output_path: Path) -> Path:
audiofile_prepended = _add_audio_silence(audiofile)
DEMO_FILE = {"uri": "blabla", "audio": audiofile_prepended}
dz = pipeline(DEMO_FILE)
out_file = Path.joinpath(output_path, "diarization.txt")
with open(out_file, "w") as text_file:
text_file.write(str(dz))
print("Diarized:")
print(*list(dz.itertracks(yield_label=True))[:10], sep="\n")
return out_file
def transcribe(
model: Whisper,
diarized_groups: list,
output_path: Path,
lang: str = "en",
word_timestamps: bool = True,
):
for i in range(len(diarized_groups)):
f = {Path.joinpath(output_path, str(i))}
audio_f = f"{f}.wav"
json_f = f"{f}.json"
result = model.transcribe(
audio=audio_f, language=lang, word_timestamps=word_timestamps
)
with open(json_f, "w") as outfile:
json.dump(result, outfile, indent=4)
def save_diarized_audio_files(
diarization: Path, audiofile: Path, output_path: Path
) -> list:
groups = _group_speakers(diarization)
_save_individual_audio_files(audiofile, groups, output_path)
return groups
def _add_audio_silence(audiofile) -> Path:
spacermilli = MILLISECONDS_TO_SPACE
spacer = AudioSegment.silent(duration=spacermilli)
audio = AudioSegment.from_wav(audiofile)
audio = spacer.append(audio, crossfade=0)
out_file = Path.joinpath(Path(os.path.dirname(audiofile)), "interview_prepend.wav")
audio.export(out_file, format="wav")
return out_file
def _save_individual_audio_files(
audiofile: Path, groups: list[str], output_path: Path
) -> None:
audio = AudioSegment.from_wav(audiofile)
gidx = -1
for g in groups:
start = re.findall(r"[0-9]+:[0-9]+:[0-9]+\.[0-9]+", string=g[0])[0]
end = re.findall(r"[0-9]+:[0-9]+:[0-9]+\.[0-9]+", string=g[-1])[1]
start = _millisec(start) # - spacermilli
end = _millisec(end) # - spacermilli
gidx += 1
audio[start:end].export(
f"{Path.joinpath(output_path, str(gidx))}.wav", format="wav"
)
def _group_speakers(diarization_file: Path) -> list:
dzs = open(diarization_file).read().splitlines()
groups: list = []
g = []
lastend = 0
for d in dzs:
if g and (g[0].split()[-1] != d.split()[-1]): # same speaker
groups.append(g)
g = []
g.append(d)
end = re.findall(r"[0-9]+:[0-9]+:[0-9]+\.[0-9]+", string=d)[1]
end = _millisec(end)
if lastend > end: # segment engulfed by a previous segment
groups.append(g)
g = []
else:
lastend = end
if g:
groups.append(g)
return groups
def _millisec(timeStr):
spl = timeStr.split(":")
s = (int)((int(spl[0]) * 60 * 60 + int(spl[1]) * 60 + float(spl[2])) * 1000)
return s

View file

@ -2,12 +2,15 @@ from pathlib import Path
import runpod
from runpod.serverless import os
import loaders
import process
output_path = os.environ.get("VERBANOTE_OUTPUT_PATH", "/transcriptions")
output_path = Path(output_path)
input_path = os.environ.get("VERBANOTE_INPUT_PATH", "/audiofiles")
input_path = Path(input_path)
access_token = os.environ.get("VERBANOTE_HF_TOKEN")
output_path = os.environ.get("VERBANOTE_OUTPUT_PATH", "/transcriptions")
output_path = str(Path(output_path))
input_path = os.environ.get("VERBANOTE_INPUT_PATH", "/audiofiles")
input_path = str(Path(input_path))
loaders.prep()
diarize_pipeline = loaders.diarization(access_token)
@ -20,12 +23,32 @@ def handler(job):
if not audiofile:
return {"error": "missing audio file location"}
diarized = process.diarize(audiofile, diarize_pipeline, output_path)
diarized_groups = process.save_diarized_audio_files(
diarized, audiofile, output_path
)
process.transcribe(
model=whisper_model, diarized_groups=diarized_groups, output_path=output_path
)
return {
"speaker_timings": "s3-address-to-speakers",
"transcription_text": "s3-address-to-transcription",
"transcription_page": "web-address-to-deployment",
}
# speakers = {
# # speaker, textboxcolor, speaker color
# "SPEAKER_00": ("SPEAKER00", "white", "darkgreen"),
# "SPEAKER_01": ("SPEAKER01", "white", "darkorange"),
# "SPEAKER_02": ("SPEAKER02", "white", "darkred"),
# "SPEAKER_03": ("SPEAKER03", "white", "darkblue"),
# "SPEAKER_04": ("SPEAKER04", "white", "darkyellow"),
# "SPEAKER_05": ("SPEAKER05", "white", "lightgreen"),
# "SPEAKER_06": ("SPEAKER06", "white", "lightred"),
# "SPEAKER_07": ("SPEAKER07", "white", "lightblue"),
# }
if __name__ == "__main__":
runpod.serverless.start({"handler": handler})