4764 lines
207 KiB
Text
4764 lines
207 KiB
Text
|
{
|
|||
|
"cells": [
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"id": "RQyROdrfsvk4"
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"[![notebook shield](https://img.shields.io/static/v1?label=&message=Notebook&color=blue&style=for-the-badge&logo=googlecolab&link=https://colab.research.google.com/github/ArthurFDLR/whisper-youtube/blob/main/whisper_youtube.ipynb)](https://colab.research.google.com/github/Majdoddin/nlp/blob/main/Pyannote_plays_and_Whisper_rhymes_v_2_0.ipynb)\n",
|
|||
|
"[![repository shield](https://img.shields.io/static/v1?label=&message=Repository&color=blue&style=for-the-badge&logo=github&link=https://github.com/openai/whisper)](https://github.com/majdoddin/nlp)\n",
|
|||
|
"\n",
|
|||
|
"# Whisper's transcription plus Pyannote's Diarization \n",
|
|||
|
"\n",
|
|||
|
"**Update** - [@johnwyles](https://github.com/johnwyles) added HTML output for audio/video files from Google Drive, along with some fixes.\n",
|
|||
|
"\n",
|
|||
|
"Using the new word-level timestamping of Whisper, the transcription words are highlighted as the video plays, with optional autoscroll. And the display on small displays is improved.\n",
|
|||
|
"\n",
|
|||
|
"Moreover, the model is loaded just once, thus the whole thing runs much faster now. You can also hardcode your Huggingface token. \n",
|
|||
|
"\n",
|
|||
|
"---\n",
|
|||
|
"Andrej Karpathy [suggested](https://twitter.com/karpathy/status/1574476200801538048?s=20&t=s5IMMXOYjBI6-91dib6w8g) training a classifier on top of OpenAI [Whisper](https://openai.com/blog/whisper/) model features to identify the speaker, so we can visualize the speaker in the transcript. But, as [pointed out](https://twitter.com/tarantulae/status/1574493613362388992?s=20&t=s5IMMXOYjBI6-91dib6w8g) by Christian Perone, it seems that features from whisper wouldn't be that great for speaker recognition as its main objective is basically to ignore speaker differences.\n",
|
|||
|
"\n",
|
|||
|
"In the following, I use [**`pyannote-audio`**](https://github.com/pyannote/pyannote-audio), a speaker diarization toolkit by Hervé Bredin, to identify the speakers, and then match it with the transcriptions of Whispr, linked to the video. The input can be YouTube or an video/audio file (also on Google Drive). I try it on a [Customer Support Call](https://youtu.be/hpZFJctBUHQ). Check the result [**here**](https://majdoddin.github.io/dyson.html).\n",
|
|||
|
"\n",
|
|||
|
"To make it easier to match the transcriptions to diarizations by speaker change, Sarah Kaiser [suggested](https://github.com/openai/whisper/discussions/264#discussioncomment-3825375) runnnig the pyannote.audio first and then just running whisper on the split-by-speaker chunks. \n",
|
|||
|
"For sake of performance (and transcription quality?), we attach the audio segements into a single audio file with a silent spacer as a seperator, and run whisper on it. Enjoy it!\n",
|
|||
|
"\n",
|
|||
|
"(For sake of performance , I also tried attaching the audio segements into a single audio file with a silent -or beep- spacer as a seperator, and run whisper on it see it on [colab](https://colab.research.google.com/drive/1HuvcY4tkTHPDzcwyVH77LCh_m8tP-Qet?usp=sharing). It [works](https://majdoddin.github.io/lexicap.html) on some audio, and fails on some (Dyson's Interview). The problem is, whisper does not reliably make a timestap on a spacer. See the discussions [#139](https://github.com/openai/whisper/discussions/139) and [#29](https://github.com/openai/whisper/discussions/29))\n",
|
|||
|
"\n",
|
|||
|
"The Markdown form used below is from [@ArthurFDLR](https://github.com/ArthurFDLR/whisper-youtube/). "
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"id": "wtljXaTXnowa"
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"# Preparing the audio file"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 39,
|
|||
|
"metadata": {
|
|||
|
"cellView": "form",
|
|||
|
"id": "1zqnZsBacKph",
|
|||
|
"vscode": {
|
|||
|
"languageId": "python"
|
|||
|
}
|
|||
|
},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"from pathlib import Path\n",
|
|||
|
"#@markdown Enter the URL of the YouTube video, or the path to the video/audio file you want to transcribe, give the output path, etc. and run the cell. HTML file embeds the video for YouTube, and audio for media files.\n",
|
|||
|
"\n",
|
|||
|
"#@markdown ---\n",
|
|||
|
"#@markdown #### **Google Drive video or audio path (mp4, wav, mp3)**\n",
|
|||
|
"video_path = \"/workspace/data/interview.aac\" #@param {type:\"string\"}\n",
|
|||
|
"#@markdown ---\n",
|
|||
|
"output_path = \"/workspace/output/transcript\" #@param {type:\"string\"}\n",
|
|||
|
"output_path = str(Path(output_path))\n",
|
|||
|
"#@markdown ---\n",
|
|||
|
"#@markdown #### **Title for transcription of media file**\n",
|
|||
|
"audio_title = \"Interview transcription\" #@param {type:\"string\"}\n",
|
|||
|
"#@markdown ---\n",
|
|||
|
"#@markdown #### Copy a token from your [Hugging Face tokens page](https://huggingface.co/settings/tokens) and paste it below.\n",
|
|||
|
"access_token = \"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\" #@param {type:\"string\"}\n",
|
|||
|
"\n",
|
|||
|
"#@markdown ---\n",
|
|||
|
"#@markdown **Run this cell again if you change the video.**\n",
|
|||
|
"\n",
|
|||
|
"speakers = {'SPEAKER_00':('SPEAKER00', '#e1ffc7', 'darkgreen'), 'SPEAKER_01':('SPEAKER01', 'white', 'darkorange') }\n"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 3,
|
|||
|
"metadata": {
|
|||
|
"id": "NvDON2GxZpIb",
|
|||
|
"vscode": {
|
|||
|
"languageId": "python"
|
|||
|
}
|
|||
|
},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"import locale\n",
|
|||
|
"locale.getpreferredencoding = lambda: \"UTF-8\""
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 4,
|
|||
|
"metadata": {
|
|||
|
"colab": {
|
|||
|
"base_uri": "https://localhost:8080/"
|
|||
|
},
|
|||
|
"id": "6vgK82ahXNje",
|
|||
|
"outputId": "f1ce5185-c338-4258-d7b3-121766bc3845",
|
|||
|
"vscode": {
|
|||
|
"languageId": "python"
|
|||
|
}
|
|||
|
},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"/content/transcript\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"Path(output_path).mkdir(parents=True, exist_ok=True)\n",
|
|||
|
"%cd {output_path}\n",
|
|||
|
"video_title = \"\"\n",
|
|||
|
"video_id = \"\""
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": null,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"!apt-get update\n",
|
|||
|
"!apt-get install ffmpeg"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": null,
|
|||
|
"metadata": {
|
|||
|
"id": "VjORT6CkVoTF",
|
|||
|
"vscode": {
|
|||
|
"languageId": "python"
|
|||
|
}
|
|||
|
},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"!ffmpeg -i {repr(video_path)} -vn -acodec pcm_s16le -ar 16000 -ac 1 -y input.wav "
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"id": "1u1vbqd_VzNp"
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"## Prepending a spacer"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"id": "q7qMLTISFE6M"
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"`pyannote.audio` seems to miss the first 0.5 seconds of the audio, and, therefore, we prepend a spcacer."
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 8,
|
|||
|
"metadata": {
|
|||
|
"colab": {
|
|||
|
"base_uri": "https://localhost:8080/"
|
|||
|
},
|
|||
|
"id": "ZqznOE7Kw725",
|
|||
|
"outputId": "d381bbc3-5a3a-4fcb-eb2f-74d427083484",
|
|||
|
"vscode": {
|
|||
|
"languageId": "python"
|
|||
|
}
|
|||
|
},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n",
|
|||
|
"Collecting pydub\n",
|
|||
|
" Downloading pydub-0.25.1-py2.py3-none-any.whl (32 kB)\n",
|
|||
|
"Installing collected packages: pydub\n",
|
|||
|
"Successfully installed pydub-0.25.1\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"!pip install pydub"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 9,
|
|||
|
"metadata": {
|
|||
|
"colab": {
|
|||
|
"base_uri": "https://localhost:8080/"
|
|||
|
},
|
|||
|
"id": "MaRDsBV1CWi8",
|
|||
|
"outputId": "909a6625-0145-4646-c1cb-82a2a22a390c",
|
|||
|
"vscode": {
|
|||
|
"languageId": "python"
|
|||
|
}
|
|||
|
},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"text/plain": [
|
|||
|
"<_io.BufferedRandom name='input_prep.wav'>"
|
|||
|
]
|
|||
|
},
|
|||
|
"execution_count": 9,
|
|||
|
"metadata": {},
|
|||
|
"output_type": "execute_result"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"from pydub import AudioSegment\n",
|
|||
|
"\n",
|
|||
|
"spacermilli = 2000\n",
|
|||
|
"spacer = AudioSegment.silent(duration=spacermilli)\n",
|
|||
|
"\n",
|
|||
|
"\n",
|
|||
|
"audio = AudioSegment.from_wav(\"input.wav\") \n",
|
|||
|
"\n",
|
|||
|
"audio = spacer.append(audio, crossfade=0)\n",
|
|||
|
"\n",
|
|||
|
"audio.export('input_prep.wav', format='wav')"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"id": "mb5eEOKUooju"
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"# Pyannote's Diarization"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"id": "nxNf1l8Ye_U9"
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"[`pyannote.audio`](https://github.com/pyannote/pyannote-audio) is an open-source toolkit written in Python for **speaker diarization**. \n",
|
|||
|
"\n",
|
|||
|
"Based on [`PyTorch`](https://pytorch.org) machine learning framework, it provides a set of trainable end-to-end neural building blocks that can be combined and jointly optimized to build speaker diarization pipelines. \n",
|
|||
|
"\n",
|
|||
|
"`pyannote.audio` also comes with pretrained [models](https://huggingface.co/models?other=pyannote-audio-model) and [pipelines](https://huggingface.co/models?other=pyannote-audio-pipeline) covering a wide range of domains for voice activity detection, speaker segmentation, overlapped speech detection, speaker embedding reaching state-of-the-art performance for most of them. "
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"id": "S8Ak_OQwqd-3"
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"Installing `pyannote.audio`."
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 10,
|
|||
|
"metadata": {
|
|||
|
"colab": {
|
|||
|
"base_uri": "https://localhost:8080/"
|
|||
|
},
|
|||
|
"id": "KFgcJ8f6dNUR",
|
|||
|
"outputId": "01c343b8-a758-4222-959d-2a4b51c880a1"
|
|||
|
},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n",
|
|||
|
"Collecting light-the-torch\n",
|
|||
|
" Downloading light_the_torch-0.7.2-py3-none-any.whl (14 kB)\n",
|
|||
|
"Collecting pip<23.1,>=22.3\n",
|
|||
|
" Downloading pip-23.0.1-py3-none-any.whl (2.1 MB)\n",
|
|||
|
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.1/2.1 MB\u001b[0m \u001b[31m22.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
|||
|
"\u001b[?25hInstalling collected packages: pip, light-the-torch\n",
|
|||
|
" Attempting uninstall: pip\n",
|
|||
|
" Found existing installation: pip 22.0.4\n",
|
|||
|
" Uninstalling pip-22.0.4:\n",
|
|||
|
" Successfully uninstalled pip-22.0.4\n",
|
|||
|
"Successfully installed light-the-torch-0.7.2 pip-23.0.1\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"!pip install light-the-torch"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 11,
|
|||
|
"metadata": {
|
|||
|
"colab": {
|
|||
|
"base_uri": "https://localhost:8080/"
|
|||
|
},
|
|||
|
"id": "GhBEKgQGdPJc",
|
|||
|
"outputId": "4b43ada4-6139-4b76-e7d5-bd0e500c0491"
|
|||
|
},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n",
|
|||
|
"Collecting torch==1.13.1\n",
|
|||
|
" Downloading https://download.pytorch.org/whl/cu117/torch-1.13.1%2Bcu117-cp39-cp39-linux_x86_64.whl (1801.8 MB)\n",
|
|||
|
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.8/1.8 GB\u001b[0m \u001b[31m979.1 kB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
|||
|
"\u001b[?25hCollecting torchvision==0.14.1\n",
|
|||
|
" Downloading https://download.pytorch.org/whl/cu117/torchvision-0.14.1%2Bcu117-cp39-cp39-linux_x86_64.whl (24.3 MB)\n",
|
|||
|
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m24.3/24.3 MB\u001b[0m \u001b[31m56.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
|||
|
"\u001b[?25hCollecting torchaudio==0.13.1\n",
|
|||
|
" Downloading https://download.pytorch.org/whl/cu117/torchaudio-0.13.1%2Bcu117-cp39-cp39-linux_x86_64.whl (4.2 MB)\n",
|
|||
|
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m4.2/4.2 MB\u001b[0m \u001b[31m79.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
|||
|
"\u001b[?25hRequirement already satisfied: typing-extensions in /usr/local/lib/python3.9/dist-packages (from torch==1.13.1) (4.5.0)\n",
|
|||
|
"Requirement already satisfied: requests in /usr/local/lib/python3.9/dist-packages (from torchvision==0.14.1) (2.27.1)\n",
|
|||
|
"Requirement already satisfied: numpy in /usr/local/lib/python3.9/dist-packages (from torchvision==0.14.1) (1.22.4)\n",
|
|||
|
"Requirement already satisfied: pillow!=8.3.*,>=5.3.0 in /usr/local/lib/python3.9/dist-packages (from torchvision==0.14.1) (8.4.0)\n",
|
|||
|
"Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.9/dist-packages (from requests->torchvision==0.14.1) (3.4)\n",
|
|||
|
"Requirement already satisfied: charset-normalizer~=2.0.0 in /usr/local/lib/python3.9/dist-packages (from requests->torchvision==0.14.1) (2.0.12)\n",
|
|||
|
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.9/dist-packages (from requests->torchvision==0.14.1) (2022.12.7)\n",
|
|||
|
"Requirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/local/lib/python3.9/dist-packages (from requests->torchvision==0.14.1) (1.26.15)\n",
|
|||
|
"Installing collected packages: torch, torchvision, torchaudio\n",
|
|||
|
" Attempting uninstall: torch\n",
|
|||
|
" Found existing installation: torch 2.0.0+cu118\n",
|
|||
|
" Uninstalling torch-2.0.0+cu118:\n",
|
|||
|
" Successfully uninstalled torch-2.0.0+cu118\n",
|
|||
|
" Attempting uninstall: torchvision\n",
|
|||
|
" Found existing installation: torchvision 0.15.1+cu118\n",
|
|||
|
" Uninstalling torchvision-0.15.1+cu118:\n",
|
|||
|
" Successfully uninstalled torchvision-0.15.1+cu118\n",
|
|||
|
" Attempting uninstall: torchaudio\n",
|
|||
|
" Found existing installation: torchaudio 2.0.1+cu118\n",
|
|||
|
" Uninstalling torchaudio-2.0.1+cu118:\n",
|
|||
|
" Successfully uninstalled torchaudio-2.0.1+cu118\n",
|
|||
|
"\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n",
|
|||
|
"torchtext 0.15.1 requires torch==2.0.0, but you have torch 1.13.1+cu117 which is incompatible.\n",
|
|||
|
"torchdata 0.6.0 requires torch==2.0.0, but you have torch 1.13.1+cu117 which is incompatible.\u001b[0m\u001b[31m\n",
|
|||
|
"\u001b[0mSuccessfully installed torch-1.13.1+cu117 torchaudio-0.13.1+cu117 torchvision-0.14.1+cu117\n",
|
|||
|
"\u001b[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv\u001b[0m\u001b[33m\n",
|
|||
|
"\u001b[0m"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"!ltt install torch==1.13.1 torchvision==0.14.1 torchaudio==0.13.1 "
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 13,
|
|||
|
"metadata": {
|
|||
|
"colab": {
|
|||
|
"base_uri": "https://localhost:8080/",
|
|||
|
"height": 1000
|
|||
|
},
|
|||
|
"id": "vJGyKTQJqdzq",
|
|||
|
"outputId": "1ed58f92-05bb-4ff1-f7b0-90492bb4c5c0",
|
|||
|
"vscode": {
|
|||
|
"languageId": "python"
|
|||
|
}
|
|||
|
},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n",
|
|||
|
"Collecting git+https://github.com/hmmlearn/hmmlearn.git\n",
|
|||
|
" Cloning https://github.com/hmmlearn/hmmlearn.git to /tmp/pip-req-build-jeb7z7vl\n",
|
|||
|
" Running command git clone --filter=blob:none --quiet https://github.com/hmmlearn/hmmlearn.git /tmp/pip-req-build-jeb7z7vl\n",
|
|||
|
" Resolved https://github.com/hmmlearn/hmmlearn.git to commit ab52395dbb80a1a76b75deb25de23e74450a5873\n",
|
|||
|
" Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
|
|||
|
"Requirement already satisfied: numpy>=1.10 in /usr/local/lib/python3.9/dist-packages (from hmmlearn==0.2.8.post31+gab52395) (1.22.4)\n",
|
|||
|
"Requirement already satisfied: scikit-learn!=0.22.0,>=0.16 in /usr/local/lib/python3.9/dist-packages (from hmmlearn==0.2.8.post31+gab52395) (1.2.2)\n",
|
|||
|
"Requirement already satisfied: scipy>=0.19 in /usr/local/lib/python3.9/dist-packages (from hmmlearn==0.2.8.post31+gab52395) (1.10.1)\n",
|
|||
|
"Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.9/dist-packages (from scikit-learn!=0.22.0,>=0.16->hmmlearn==0.2.8.post31+gab52395) (3.1.0)\n",
|
|||
|
"Requirement already satisfied: joblib>=1.1.1 in /usr/local/lib/python3.9/dist-packages (from scikit-learn!=0.22.0,>=0.16->hmmlearn==0.2.8.post31+gab52395) (1.1.1)\n",
|
|||
|
"Building wheels for collected packages: hmmlearn\n",
|
|||
|
" Building wheel for hmmlearn (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
|
|||
|
" Created wheel for hmmlearn: filename=hmmlearn-0.2.8.post31+gab52395-cp39-cp39-linux_x86_64.whl size=133708 sha256=ef8c2735851c0ec43fe8bdb5b0e238bbee80030cd6dae082f91cbe1ded62d504\n",
|
|||
|
" Stored in directory: /tmp/pip-ephem-wheel-cache-7yutu4jm/wheels/7e/7a/76/9d299ba2b4294f29bd9819edda1d3d9f5310ee89fcda2e110c\n",
|
|||
|
"Successfully built hmmlearn\n",
|
|||
|
"Installing collected packages: hmmlearn\n",
|
|||
|
"Successfully installed hmmlearn-0.2.8.post31+gab52395\n",
|
|||
|
"\u001b[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv\u001b[0m\u001b[33m\n",
|
|||
|
"\u001b[0mLooking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n",
|
|||
|
"Collecting git+https://github.com/pyannote/pyannote-audio.git@develop\n",
|
|||
|
" Cloning https://github.com/pyannote/pyannote-audio.git (to revision develop) to /tmp/pip-req-build-fvhib8sn\n",
|
|||
|
" Running command git clone --filter=blob:none --quiet https://github.com/pyannote/pyannote-audio.git /tmp/pip-req-build-fvhib8sn\n",
|
|||
|
" Resolved https://github.com/pyannote/pyannote-audio.git to commit 74939acbfa830521a434cb4068176196dd9612dc\n",
|
|||
|
" Running command git submodule update --init --recursive -q\n",
|
|||
|
" Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
|
|||
|
"Collecting asteroid-filterbanks<0.5,>=0.4\n",
|
|||
|
" Downloading asteroid_filterbanks-0.4.0-py3-none-any.whl (29 kB)\n",
|
|||
|
"Collecting backports.cached_property\n",
|
|||
|
" Downloading backports.cached_property-1.0.2-py3-none-any.whl (6.1 kB)\n",
|
|||
|
"Collecting einops<0.4.0,>=0.3\n",
|
|||
|
" Downloading einops-0.3.2-py3-none-any.whl (25 kB)\n",
|
|||
|
"Requirement already satisfied: hmmlearn<0.3,>=0.2.7 in /usr/local/lib/python3.9/dist-packages (from pyannote.audio==2.1.1) (0.2.8.post31+gab52395)\n",
|
|||
|
"Collecting huggingface_hub>=0.8.1\n",
|
|||
|
" Downloading huggingface_hub-0.13.3-py3-none-any.whl (199 kB)\n",
|
|||
|
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m199.8/199.8 kB\u001b[0m \u001b[31m8.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
|||
|
"\u001b[?25hCollecting networkx<3.0,>=2.6\n",
|
|||
|
" Downloading networkx-2.8.8-py3-none-any.whl (2.0 MB)\n",
|
|||
|
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.0/2.0 MB\u001b[0m \u001b[31m39.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
|||
|
"\u001b[?25hCollecting omegaconf<3.0,>=2.1\n",
|
|||
|
" Downloading omegaconf-2.3.0-py3-none-any.whl (79 kB)\n",
|
|||
|
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m79.5/79.5 kB\u001b[0m \u001b[31m10.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
|||
|
"\u001b[?25hCollecting pyannote.core<5.0,>=4.4\n",
|
|||
|
" Downloading pyannote.core-4.5-py3-none-any.whl (60 kB)\n",
|
|||
|
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m60.5/60.5 kB\u001b[0m \u001b[31m6.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
|||
|
"\u001b[?25hCollecting pyannote.database<5.0,>=4.1.1\n",
|
|||
|
" Downloading pyannote.database-4.1.3-py3-none-any.whl (41 kB)\n",
|
|||
|
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m41.6/41.6 kB\u001b[0m \u001b[31m5.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
|||
|
"\u001b[?25hCollecting pyannote.metrics<4.0,>=3.2\n",
|
|||
|
" Downloading pyannote.metrics-3.2.1-py3-none-any.whl (51 kB)\n",
|
|||
|
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m51.4/51.4 kB\u001b[0m \u001b[31m7.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
|||
|
"\u001b[?25hCollecting pyannote.pipeline<3.0,>=2.3\n",
|
|||
|
" Downloading pyannote.pipeline-2.3-py3-none-any.whl (30 kB)\n",
|
|||
|
"Collecting pytorch_lightning<1.9,>=1.8.0\n",
|
|||
|
" Downloading pytorch_lightning-1.8.6-py3-none-any.whl (800 kB)\n",
|
|||
|
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m800.3/800.3 kB\u001b[0m \u001b[31m54.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
|||
|
"\u001b[?25hCollecting pytorch_metric_learning<2.0,>=1.0.0\n",
|
|||
|
" Downloading pytorch_metric_learning-1.7.3-py3-none-any.whl (112 kB)\n",
|
|||
|
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m112.2/112.2 kB\u001b[0m \u001b[31m13.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
|||
|
"\u001b[?25hRequirement already satisfied: rich>=12.0.0 in /usr/local/lib/python3.9/dist-packages (from pyannote.audio==2.1.1) (13.3.3)\n",
|
|||
|
"Collecting semver<3.0,>=2.10.2\n",
|
|||
|
" Downloading semver-2.13.0-py2.py3-none-any.whl (12 kB)\n",
|
|||
|
"Collecting singledispatchmethod\n",
|
|||
|
" Downloading singledispatchmethod-1.0-py2.py3-none-any.whl (4.7 kB)\n",
|
|||
|
"Collecting soundfile<0.12,>=0.10.2\n",
|
|||
|
" Downloading soundfile-0.11.0-py2.py3-none-any.whl (23 kB)\n",
|
|||
|
"Collecting speechbrain<0.6,>=0.5.12\n",
|
|||
|
" Downloading speechbrain-0.5.14-py3-none-any.whl (519 kB)\n",
|
|||
|
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m519.0/519.0 kB\u001b[0m \u001b[31m44.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
|||
|
"\u001b[?25hRequirement already satisfied: torch>=1.9 in /usr/local/lib/python3.9/dist-packages (from pyannote.audio==2.1.1) (1.13.1+cu117)\n",
|
|||
|
"Collecting torch_audiomentations>=0.11.0\n",
|
|||
|
" Downloading torch_audiomentations-0.11.0-py3-none-any.whl (47 kB)\n",
|
|||
|
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m47.9/47.9 kB\u001b[0m \u001b[31m6.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
|||
|
"\u001b[?25hRequirement already satisfied: torchaudio<1.0,>=0.10 in /usr/local/lib/python3.9/dist-packages (from pyannote.audio==2.1.1) (0.13.1+cu117)\n",
|
|||
|
"Collecting torchmetrics<1.0,>=0.11\n",
|
|||
|
" Downloading torchmetrics-0.11.4-py3-none-any.whl (519 kB)\n",
|
|||
|
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m519.2/519.2 kB\u001b[0m \u001b[31m51.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
|||
|
"\u001b[?25hRequirement already satisfied: typing_extensions in /usr/local/lib/python3.9/dist-packages (from pyannote.audio==2.1.1) (4.5.0)\n",
|
|||
|
"Requirement already satisfied: numpy in /usr/local/lib/python3.9/dist-packages (from asteroid-filterbanks<0.5,>=0.4->pyannote.audio==2.1.1) (1.22.4)\n",
|
|||
|
"Requirement already satisfied: scikit-learn!=0.22.0,>=0.16 in /usr/local/lib/python3.9/dist-packages (from hmmlearn<0.3,>=0.2.7->pyannote.audio==2.1.1) (1.2.2)\n",
|
|||
|
"Requirement already satisfied: scipy>=0.19 in /usr/local/lib/python3.9/dist-packages (from hmmlearn<0.3,>=0.2.7->pyannote.audio==2.1.1) (1.10.1)\n",
|
|||
|
"Requirement already satisfied: filelock in /usr/local/lib/python3.9/dist-packages (from huggingface_hub>=0.8.1->pyannote.audio==2.1.1) (3.10.7)\n",
|
|||
|
"Requirement already satisfied: requests in /usr/local/lib/python3.9/dist-packages (from huggingface_hub>=0.8.1->pyannote.audio==2.1.1) (2.27.1)\n",
|
|||
|
"Requirement already satisfied: packaging>=20.9 in /usr/local/lib/python3.9/dist-packages (from huggingface_hub>=0.8.1->pyannote.audio==2.1.1) (23.0)\n",
|
|||
|
"Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.9/dist-packages (from huggingface_hub>=0.8.1->pyannote.audio==2.1.1) (6.0)\n",
|
|||
|
"Requirement already satisfied: tqdm>=4.42.1 in /usr/local/lib/python3.9/dist-packages (from huggingface_hub>=0.8.1->pyannote.audio==2.1.1) (4.65.0)\n",
|
|||
|
"Collecting antlr4-python3-runtime==4.9.*\n",
|
|||
|
" Downloading antlr4-python3-runtime-4.9.3.tar.gz (117 kB)\n",
|
|||
|
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m117.0/117.0 kB\u001b[0m \u001b[31m16.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
|||
|
"\u001b[?25h Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
|
|||
|
"Requirement already satisfied: sortedcontainers>=2.0.4 in /usr/local/lib/python3.9/dist-packages (from pyannote.core<5.0,>=4.4->pyannote.audio==2.1.1) (2.4.0)\n",
|
|||
|
"Collecting simplejson>=3.8.1\n",
|
|||
|
" Downloading simplejson-3.18.4-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (136 kB)\n",
|
|||
|
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m136.8/136.8 kB\u001b[0m \u001b[31m18.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
|||
|
"\u001b[?25hRequirement already satisfied: typer[all]>=0.2.1 in /usr/local/lib/python3.9/dist-packages (from pyannote.database<5.0,>=4.1.1->pyannote.audio==2.1.1) (0.7.0)\n",
|
|||
|
"Requirement already satisfied: pandas>=0.19 in /usr/local/lib/python3.9/dist-packages (from pyannote.database<5.0,>=4.1.1->pyannote.audio==2.1.1) (1.4.4)\n",
|
|||
|
"Collecting docopt>=0.6.2\n",
|
|||
|
" Downloading docopt-0.6.2.tar.gz (25 kB)\n",
|
|||
|
" Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
|
|||
|
"Requirement already satisfied: matplotlib>=2.0.0 in /usr/local/lib/python3.9/dist-packages (from pyannote.metrics<4.0,>=3.2->pyannote.audio==2.1.1) (3.7.1)\n",
|
|||
|
"Requirement already satisfied: tabulate>=0.7.7 in /usr/local/lib/python3.9/dist-packages (from pyannote.metrics<4.0,>=3.2->pyannote.audio==2.1.1) (0.8.10)\n",
|
|||
|
"Requirement already satisfied: sympy>=1.1 in /usr/local/lib/python3.9/dist-packages (from pyannote.metrics<4.0,>=3.2->pyannote.audio==2.1.1) (1.11.1)\n",
|
|||
|
"Collecting optuna>=1.4\n",
|
|||
|
" Downloading optuna-3.1.0-py3-none-any.whl (365 kB)\n",
|
|||
|
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m365.3/365.3 kB\u001b[0m \u001b[31m38.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
|||
|
"\u001b[?25hRequirement already satisfied: fsspec[http]>2021.06.0 in /usr/local/lib/python3.9/dist-packages (from pytorch_lightning<1.9,>=1.8.0->pyannote.audio==2.1.1) (2023.3.0)\n",
|
|||
|
"Collecting lightning-utilities!=0.4.0,>=0.3.0\n",
|
|||
|
" Downloading lightning_utilities-0.8.0-py3-none-any.whl (20 kB)\n",
|
|||
|
"Collecting tensorboardX>=2.2\n",
|
|||
|
" Downloading tensorboardX-2.6-py2.py3-none-any.whl (114 kB)\n",
|
|||
|
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m114.5/114.5 kB\u001b[0m \u001b[31m15.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
|||
|
"\u001b[?25hRequirement already satisfied: markdown-it-py<3.0.0,>=2.2.0 in /usr/local/lib/python3.9/dist-packages (from rich>=12.0.0->pyannote.audio==2.1.1) (2.2.0)\n",
|
|||
|
"Requirement already satisfied: pygments<3.0.0,>=2.13.0 in /usr/local/lib/python3.9/dist-packages (from rich>=12.0.0->pyannote.audio==2.1.1) (2.14.0)\n",
|
|||
|
"Requirement already satisfied: cffi>=1.0 in /usr/local/lib/python3.9/dist-packages (from soundfile<0.12,>=0.10.2->pyannote.audio==2.1.1) (1.15.1)\n",
|
|||
|
"Requirement already satisfied: joblib in /usr/local/lib/python3.9/dist-packages (from speechbrain<0.6,>=0.5.12->pyannote.audio==2.1.1) (1.1.1)\n",
|
|||
|
"Collecting hyperpyyaml\n",
|
|||
|
" Downloading HyperPyYAML-1.2.0-py3-none-any.whl (16 kB)\n",
|
|||
|
"Collecting sentencepiece\n",
|
|||
|
" Downloading sentencepiece-0.1.97-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB)\n",
|
|||
|
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.3/1.3 MB\u001b[0m \u001b[31m73.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
|||
|
"\u001b[?25hRequirement already satisfied: librosa>=0.6.0 in /usr/local/lib/python3.9/dist-packages (from torch_audiomentations>=0.11.0->pyannote.audio==2.1.1) (0.10.0.post2)\n",
|
|||
|
"Collecting torch-pitch-shift>=1.2.2\n",
|
|||
|
" Downloading torch_pitch_shift-1.2.3-py3-none-any.whl (4.9 kB)\n",
|
|||
|
"Collecting julius<0.3,>=0.2.3\n",
|
|||
|
" Downloading julius-0.2.7.tar.gz (59 kB)\n",
|
|||
|
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m59.6/59.6 kB\u001b[0m \u001b[31m8.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
|||
|
"\u001b[?25h Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
|
|||
|
"Requirement already satisfied: pycparser in /usr/local/lib/python3.9/dist-packages (from cffi>=1.0->soundfile<0.12,>=0.10.2->pyannote.audio==2.1.1) (2.21)\n",
|
|||
|
"Collecting aiohttp!=4.0.0a0,!=4.0.0a1\n",
|
|||
|
" Downloading aiohttp-3.8.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.0 MB)\n",
|
|||
|
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.0/1.0 MB\u001b[0m \u001b[31m68.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
|||
|
"\u001b[?25hRequirement already satisfied: numba>=0.51.0 in /usr/local/lib/python3.9/dist-packages (from librosa>=0.6.0->torch_audiomentations>=0.11.0->pyannote.audio==2.1.1) (0.56.4)\n",
|
|||
|
"Requirement already satisfied: pooch<1.7,>=1.0 in /usr/local/lib/python3.9/dist-packages (from librosa>=0.6.0->torch_audiomentations>=0.11.0->pyannote.audio==2.1.1) (1.6.0)\n",
|
|||
|
"Requirement already satisfied: decorator>=4.3.0 in /usr/local/lib/python3.9/dist-packages (from librosa>=0.6.0->torch_audiomentations>=0.11.0->pyannote.audio==2.1.1) (4.4.2)\n",
|
|||
|
"Requirement already satisfied: soxr>=0.3.2 in /usr/local/lib/python3.9/dist-packages (from librosa>=0.6.0->torch_audiomentations>=0.11.0->pyannote.audio==2.1.1) (0.3.4)\n",
|
|||
|
"Requirement already satisfied: audioread>=2.1.9 in /usr/local/lib/python3.9/dist-packages (from librosa>=0.6.0->torch_audiomentations>=0.11.0->pyannote.audio==2.1.1) (3.0.0)\n",
|
|||
|
"Requirement already satisfied: msgpack>=1.0 in /usr/local/lib/python3.9/dist-packages (from librosa>=0.6.0->torch_audiomentations>=0.11.0->pyannote.audio==2.1.1) (1.0.5)\n",
|
|||
|
"Requirement already satisfied: lazy-loader>=0.1 in /usr/local/lib/python3.9/dist-packages (from librosa>=0.6.0->torch_audiomentations>=0.11.0->pyannote.audio==2.1.1) (0.2)\n",
|
|||
|
"Collecting librosa>=0.6.0\n",
|
|||
|
" Downloading librosa-0.10.0.post1-py3-none-any.whl (252 kB)\n",
|
|||
|
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m253.0/253.0 kB\u001b[0m \u001b[31m30.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
|||
|
"\u001b[?25h Downloading librosa-0.10.0-py3-none-any.whl (252 kB)\n",
|
|||
|
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m252.9/252.9 kB\u001b[0m \u001b[31m30.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
|||
|
"\u001b[?25h Downloading librosa-0.9.2-py3-none-any.whl (214 kB)\n",
|
|||
|
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m214.3/214.3 kB\u001b[0m \u001b[31m28.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
|||
|
"\u001b[?25hCollecting resampy>=0.2.2\n",
|
|||
|
" Downloading resampy-0.4.2-py3-none-any.whl (3.1 MB)\n",
|
|||
|
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m3.1/3.1 MB\u001b[0m \u001b[31m95.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
|||
|
"\u001b[?25hRequirement already satisfied: mdurl~=0.1 in /usr/local/lib/python3.9/dist-packages (from markdown-it-py<3.0.0,>=2.2.0->rich>=12.0.0->pyannote.audio==2.1.1) (0.1.2)\n",
|
|||
|
"Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.9/dist-packages (from matplotlib>=2.0.0->pyannote.metrics<4.0,>=3.2->pyannote.audio==2.1.1) (3.0.9)\n",
|
|||
|
"Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.9/dist-packages (from matplotlib>=2.0.0->pyannote.metrics<4.0,>=3.2->pyannote.audio==2.1.1) (1.0.7)\n",
|
|||
|
"Requirement already satisfied: pillow>=6.2.0 in /usr/local/lib/python3.9/dist-packages (from matplotlib>=2.0.0->pyannote.metrics<4.0,>=3.2->pyannote.audio==2.1.1) (8.4.0)\n",
|
|||
|
"Requirement already satisfied: python-dateutil>=2.7 in /usr/local/lib/python3.9/dist-packages (from matplotlib>=2.0.0->pyannote.metrics<4.0,>=3.2->pyannote.audio==2.1.1) (2.8.2)\n",
|
|||
|
"Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.9/dist-packages (from matplotlib>=2.0.0->pyannote.metrics<4.0,>=3.2->pyannote.audio==2.1.1) (0.11.0)\n",
|
|||
|
"Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.9/dist-packages (from matplotlib>=2.0.0->pyannote.metrics<4.0,>=3.2->pyannote.audio==2.1.1) (4.39.3)\n",
|
|||
|
"Requirement already satisfied: importlib-resources>=3.2.0 in /usr/local/lib/python3.9/dist-packages (from matplotlib>=2.0.0->pyannote.metrics<4.0,>=3.2->pyannote.audio==2.1.1) (5.12.0)\n",
|
|||
|
"Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.9/dist-packages (from matplotlib>=2.0.0->pyannote.metrics<4.0,>=3.2->pyannote.audio==2.1.1) (1.4.4)\n",
|
|||
|
"Collecting cmaes>=0.9.1\n",
|
|||
|
" Downloading cmaes-0.9.1-py3-none-any.whl (21 kB)\n",
|
|||
|
"Collecting alembic>=1.5.0\n",
|
|||
|
" Downloading alembic-1.10.3-py3-none-any.whl (212 kB)\n",
|
|||
|
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m212.3/212.3 kB\u001b[0m \u001b[31m27.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
|||
|
"\u001b[?25hRequirement already satisfied: sqlalchemy>=1.3.0 in /usr/local/lib/python3.9/dist-packages (from optuna>=1.4->pyannote.pipeline<3.0,>=2.3->pyannote.audio==2.1.1) (1.4.47)\n",
|
|||
|
"Collecting colorlog\n",
|
|||
|
" Downloading colorlog-6.7.0-py2.py3-none-any.whl (11 kB)\n",
|
|||
|
"Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.9/dist-packages (from pandas>=0.19->pyannote.database<5.0,>=4.1.1->pyannote.audio==2.1.1) (2022.7.1)\n",
|
|||
|
"Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.9/dist-packages (from scikit-learn!=0.22.0,>=0.16->hmmlearn<0.3,>=0.2.7->pyannote.audio==2.1.1) (3.1.0)\n",
|
|||
|
"Requirement already satisfied: mpmath>=0.19 in /usr/local/lib/python3.9/dist-packages (from sympy>=1.1->pyannote.metrics<4.0,>=3.2->pyannote.audio==2.1.1) (1.3.0)\n",
|
|||
|
"Requirement already satisfied: protobuf<4,>=3.8.0 in /usr/local/lib/python3.9/dist-packages (from tensorboardX>=2.2->pytorch_lightning<1.9,>=1.8.0->pyannote.audio==2.1.1) (3.20.3)\n",
|
|||
|
"Collecting primePy>=1.3\n",
|
|||
|
" Downloading primePy-1.3-py3-none-any.whl (4.0 kB)\n",
|
|||
|
"Requirement already satisfied: click<9.0.0,>=7.1.1 in /usr/local/lib/python3.9/dist-packages (from typer[all]>=0.2.1->pyannote.database<5.0,>=4.1.1->pyannote.audio==2.1.1) (8.1.3)\n",
|
|||
|
"Collecting shellingham<2.0.0,>=1.3.0\n",
|
|||
|
" Downloading shellingham-1.5.0.post1-py2.py3-none-any.whl (9.4 kB)\n",
|
|||
|
"Collecting rich>=12.0.0\n",
|
|||
|
" Downloading rich-12.6.0-py3-none-any.whl (237 kB)\n",
|
|||
|
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m237.5/237.5 kB\u001b[0m \u001b[31m29.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
|||
|
"\u001b[?25hCollecting colorama<0.5.0,>=0.4.3\n",
|
|||
|
" Downloading colorama-0.4.6-py2.py3-none-any.whl (25 kB)\n",
|
|||
|
"Collecting commonmark<0.10.0,>=0.9.0\n",
|
|||
|
" Downloading commonmark-0.9.1-py2.py3-none-any.whl (51 kB)\n",
|
|||
|
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m51.1/51.1 kB\u001b[0m \u001b[31m6.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
|||
|
"\u001b[?25hCollecting ruamel.yaml>=0.17.8\n",
|
|||
|
" Downloading ruamel.yaml-0.17.21-py3-none-any.whl (109 kB)\n",
|
|||
|
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m109.5/109.5 kB\u001b[0m \u001b[31m15.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
|||
|
"\u001b[?25hRequirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.9/dist-packages (from requests->huggingface_hub>=0.8.1->pyannote.audio==2.1.1) (3.4)\n",
|
|||
|
"Requirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/local/lib/python3.9/dist-packages (from requests->huggingface_hub>=0.8.1->pyannote.audio==2.1.1) (1.26.15)\n",
|
|||
|
"Requirement already satisfied: charset-normalizer~=2.0.0 in /usr/local/lib/python3.9/dist-packages (from requests->huggingface_hub>=0.8.1->pyannote.audio==2.1.1) (2.0.12)\n",
|
|||
|
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.9/dist-packages (from requests->huggingface_hub>=0.8.1->pyannote.audio==2.1.1) (2022.12.7)\n",
|
|||
|
"Collecting async-timeout<5.0,>=4.0.0a3\n",
|
|||
|
" Downloading async_timeout-4.0.2-py3-none-any.whl (5.8 kB)\n",
|
|||
|
"Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.9/dist-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->fsspec[http]>2021.06.0->pytorch_lightning<1.9,>=1.8.0->pyannote.audio==2.1.1) (22.2.0)\n",
|
|||
|
"Collecting aiosignal>=1.1.2\n",
|
|||
|
" Downloading aiosignal-1.3.1-py3-none-any.whl (7.6 kB)\n",
|
|||
|
"Collecting frozenlist>=1.1.1\n",
|
|||
|
" Downloading frozenlist-1.3.3-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (158 kB)\n",
|
|||
|
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m158.8/158.8 kB\u001b[0m \u001b[31m20.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
|||
|
"\u001b[?25hCollecting multidict<7.0,>=4.5\n",
|
|||
|
" Downloading multidict-6.0.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (114 kB)\n",
|
|||
|
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m114.2/114.2 kB\u001b[0m \u001b[31m15.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
|||
|
"\u001b[?25hCollecting yarl<2.0,>=1.0\n",
|
|||
|
" Downloading yarl-1.8.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (264 kB)\n",
|
|||
|
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m264.6/264.6 kB\u001b[0m \u001b[31m30.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
|||
|
"\u001b[?25hCollecting Mako\n",
|
|||
|
" Downloading Mako-1.2.4-py3-none-any.whl (78 kB)\n",
|
|||
|
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m78.7/78.7 kB\u001b[0m \u001b[31m12.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
|||
|
"\u001b[?25hRequirement already satisfied: zipp>=3.1.0 in /usr/local/lib/python3.9/dist-packages (from importlib-resources>=3.2.0->matplotlib>=2.0.0->pyannote.metrics<4.0,>=3.2->pyannote.audio==2.1.1) (3.15.0)\n",
|
|||
|
"Requirement already satisfied: llvmlite<0.40,>=0.39.0dev0 in /usr/local/lib/python3.9/dist-packages (from numba>=0.51.0->librosa>=0.6.0->torch_audiomentations>=0.11.0->pyannote.audio==2.1.1) (0.39.1)\n",
|
|||
|
"Requirement already satisfied: setuptools in /usr/local/lib/python3.9/dist-packages (from numba>=0.51.0->librosa>=0.6.0->torch_audiomentations>=0.11.0->pyannote.audio==2.1.1) (67.6.1)\n",
|
|||
|
"Requirement already satisfied: appdirs>=1.3.0 in /usr/local/lib/python3.9/dist-packages (from pooch<1.7,>=1.0->librosa>=0.6.0->torch_audiomentations>=0.11.0->pyannote.audio==2.1.1) (1.4.4)\n",
|
|||
|
"Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.9/dist-packages (from python-dateutil>=2.7->matplotlib>=2.0.0->pyannote.metrics<4.0,>=3.2->pyannote.audio==2.1.1) (1.16.0)\n",
|
|||
|
"Collecting ruamel.yaml.clib>=0.2.6\n",
|
|||
|
" Downloading ruamel.yaml.clib-0.2.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl (519 kB)\n",
|
|||
|
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m519.4/519.4 kB\u001b[0m \u001b[31m49.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
|||
|
"\u001b[?25hRequirement already satisfied: greenlet!=0.4.17 in /usr/local/lib/python3.9/dist-packages (from sqlalchemy>=1.3.0->optuna>=1.4->pyannote.pipeline<3.0,>=2.3->pyannote.audio==2.1.1) (2.0.2)\n",
|
|||
|
"Requirement already satisfied: MarkupSafe>=0.9.2 in /usr/local/lib/python3.9/dist-packages (from Mako->alembic>=1.5.0->optuna>=1.4->pyannote.pipeline<3.0,>=2.3->pyannote.audio==2.1.1) (2.1.2)\n",
|
|||
|
"Building wheels for collected packages: pyannote.audio, antlr4-python3-runtime, docopt, julius\n",
|
|||
|
" Building wheel for pyannote.audio (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
|
|||
|
" Created wheel for pyannote.audio: filename=pyannote.audio-2.1.1-py2.py3-none-any.whl size=399199 sha256=30bad5338fada65e28b5604f54e43927cf64b12497bc480121a0a127104901d0\n",
|
|||
|
" Stored in directory: /tmp/pip-ephem-wheel-cache-f0rslw70/wheels/e7/5e/d6/b7b3e90fb0d5119342664d77b67656adc799f9101d9c70151f\n",
|
|||
|
" Building wheel for antlr4-python3-runtime (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
|
|||
|
" Created wheel for antlr4-python3-runtime: filename=antlr4_python3_runtime-4.9.3-py3-none-any.whl size=144573 sha256=7e1c064faa96c7c1859081a6a7a896093d2216814656ef803d28c90e83d3747c\n",
|
|||
|
" Stored in directory: /root/.cache/pip/wheels/23/cf/80/f3efa822e6ab23277902ee9165fe772eeb1dfb8014f359020a\n",
|
|||
|
" Building wheel for docopt (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
|
|||
|
" Created wheel for docopt: filename=docopt-0.6.2-py2.py3-none-any.whl size=13721 sha256=b137ea1605baa880b71aeb265d75028349867499908974cb360fff56a84a6b69\n",
|
|||
|
" Stored in directory: /root/.cache/pip/wheels/70/4a/46/1309fc853b8d395e60bafaf1b6df7845bdd82c95fd59dd8d2b\n",
|
|||
|
" Building wheel for julius (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
|
|||
|
" Created wheel for julius: filename=julius-0.2.7-py3-none-any.whl size=21895 sha256=8f7f2a87c0034b8693e6148d8acad6662860872c2a3a6e010e4d1ae3f129725c\n",
|
|||
|
" Stored in directory: /root/.cache/pip/wheels/53/0a/a7/fc08f97438f4969d86afa7904336c2eb7eb422101359f3ad11\n",
|
|||
|
"Successfully built pyannote.audio antlr4-python3-runtime docopt julius\n",
|
|||
|
"Installing collected packages: singledispatchmethod, sentencepiece, primePy, einops, docopt, commonmark, antlr4-python3-runtime, tensorboardX, simplejson, shellingham, semver, ruamel.yaml.clib, rich, omegaconf, networkx, multidict, Mako, lightning-utilities, frozenlist, colorlog, colorama, cmaes, backports.cached_property, async-timeout, yarl, torchmetrics, soundfile, ruamel.yaml, resampy, pyannote.core, julius, huggingface_hub, asteroid-filterbanks, alembic, aiosignal, torch-pitch-shift, pytorch_metric_learning, pyannote.database, optuna, librosa, hyperpyyaml, aiohttp, torch_audiomentations, speechbrain, pyannote.pipeline, pyannote.metrics, pytorch_lightning, pyannote.audio\n",
|
|||
|
" Attempting uninstall: rich\n",
|
|||
|
" Found existing installation: rich 13.3.3\n",
|
|||
|
" Uninstalling rich-13.3.3:\n",
|
|||
|
" Successfully uninstalled rich-13.3.3\n",
|
|||
|
" Attempting uninstall: networkx\n",
|
|||
|
" Found existing installation: networkx 3.0\n",
|
|||
|
" Uninstalling networkx-3.0:\n",
|
|||
|
" Successfully uninstalled networkx-3.0\n",
|
|||
|
" Attempting uninstall: soundfile\n",
|
|||
|
" Found existing installation: soundfile 0.12.1\n",
|
|||
|
" Uninstalling soundfile-0.12.1:\n",
|
|||
|
" Successfully uninstalled soundfile-0.12.1\n",
|
|||
|
" Attempting uninstall: librosa\n",
|
|||
|
" Found existing installation: librosa 0.10.0.post2\n",
|
|||
|
" Uninstalling librosa-0.10.0.post2:\n",
|
|||
|
" Successfully uninstalled librosa-0.10.0.post2\n",
|
|||
|
"Successfully installed Mako-1.2.4 aiohttp-3.8.4 aiosignal-1.3.1 alembic-1.10.3 antlr4-python3-runtime-4.9.3 asteroid-filterbanks-0.4.0 async-timeout-4.0.2 backports.cached_property-1.0.2 cmaes-0.9.1 colorama-0.4.6 colorlog-6.7.0 commonmark-0.9.1 docopt-0.6.2 einops-0.3.2 frozenlist-1.3.3 huggingface_hub-0.13.3 hyperpyyaml-1.2.0 julius-0.2.7 librosa-0.9.2 lightning-utilities-0.8.0 multidict-6.0.4 networkx-2.8.8 omegaconf-2.3.0 optuna-3.1.0 primePy-1.3 pyannote.audio-2.1.1 pyannote.core-4.5 pyannote.database-4.1.3 pyannote.metrics-3.2.1 pyannote.pipeline-2.3 pytorch_lightning-1.8.6 pytorch_metric_learning-1.7.3 resampy-0.4.2 rich-12.6.0 ruamel.yaml-0.17.21 ruamel.yaml.clib-0.2.7 semver-2.13.0 sentencepiece-0.1.97 shellingham-1.5.0.post1 simplejson-3.18.4 singledispatchmethod-1.0 soundfile-0.11.0 speechbrain-0.5.14 tensorboardX-2.6 torch-pitch-shift-1.2.3 torch_audiomentations-0.11.0 torchmetrics-0.11.4 yarl-1.8.2\n",
|
|||
|
"\u001b[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv\u001b[0m\u001b[33m\n",
|
|||
|
"\u001b[0m"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"application/vnd.colab-display-data+json": {
|
|||
|
"pip_warning": {
|
|||
|
"packages": [
|
|||
|
"pydevd_plugins"
|
|||
|
]
|
|||
|
}
|
|||
|
}
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"output_type": "display_data"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"!pip install git+https://github.com/hmmlearn/hmmlearn.git\n",
|
|||
|
"!pip install git+https://github.com/pyannote/pyannote-audio.git@develop"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {},
|
|||
|
"source": [
|
|||
|
"Install whisper and load the large model - this will take a little."
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": null,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"!pip install git+https://github.com/openai/whisper.git "
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": null,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"import whisper, torch\n",
|
|||
|
"device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
|
|||
|
"model = whisper.load_model('large', device = device)"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"id": "N7TPgEVW8XeH"
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"**Important:** To load the pyannote speaker diarization pipeline, \n",
|
|||
|
"\n",
|
|||
|
"* accept the user conditions on both [hf.co/pyannote/speaker-diarization](https://hf.co/pyannote/speaker-diarization) and [hf.co/pyannote/segmentation](https://huggingface.co/pyannote/segmentation).\n",
|
|||
|
"* paste your access_token or login using `notebook_login` below"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 14,
|
|||
|
"metadata": {
|
|||
|
"id": "r5u7VMb-YnqB",
|
|||
|
"vscode": {
|
|||
|
"languageId": "python"
|
|||
|
}
|
|||
|
},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"if not(access_token):\n",
|
|||
|
" from huggingface_hub import notebook_login\n",
|
|||
|
" notebook_login()"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 15,
|
|||
|
"metadata": {
|
|||
|
"colab": {
|
|||
|
"base_uri": "https://localhost:8080/",
|
|||
|
"height": 273,
|
|||
|
"referenced_widgets": [
|
|||
|
"ceb9cabad998432ebd4541a41ad69e76",
|
|||
|
"eeb45fe8a520470b89526c96f86e942a",
|
|||
|
"1c5d0d0290a446b0950e95a8917faadc",
|
|||
|
"072bc12d63904de9a2f09539c0b0a4b4",
|
|||
|
"b4b04842f22d4334ab4287714b505e62",
|
|||
|
"2866460dbec047ba8f4c5e81cc292711",
|
|||
|
"1208590c08134023838e8e886a611a77",
|
|||
|
"8b0177713bb748828d462287e619ca96",
|
|||
|
"2e61cb0368604391a1c91a3d672ae29f",
|
|||
|
"7f0f982b1d514596b35a393c5ebd1544",
|
|||
|
"030e3e6181f74fcf86f15783aa846faf",
|
|||
|
"3ad4b30c0c6640fc921b782ff2a84545",
|
|||
|
"6873d9df2958468aa924b7c3b0b130bd",
|
|||
|
"b9cf8d797795426aa7923c36f29b7299",
|
|||
|
"3635de8b7655414d8dbedefdbd48fb7d",
|
|||
|
"54de617a9dbc468a8f833aaa06464960",
|
|||
|
"12f9050dbae742e3bc3f43cc75bc52bc",
|
|||
|
"a69987750939419b82d4d7e4f6635ca8",
|
|||
|
"8124c1ec4cb149aebb8f8134619e50e6",
|
|||
|
"61ffadd175334ffa8cb4c958b8480133",
|
|||
|
"95bae617fdbd4c908bec622c8e74df8e",
|
|||
|
"363a8f886ab84887a1d71609cf7e9413",
|
|||
|
"87b4741cc2174372ab2b3b31c45257ee",
|
|||
|
"60ef10f549044fafad82d0e592a1489b",
|
|||
|
"e71b7d04a2644c5082c1e823de958b5a",
|
|||
|
"b91fde9cc52b4be5a5a2a9e3050c5d4d",
|
|||
|
"bf25e28626fc4bbb955d31c48deea204",
|
|||
|
"98850786a145436b9bdfeff1bf2e156c",
|
|||
|
"dd231abf4cf94d208d886feb42a4b952",
|
|||
|
"772c7cc58dda47bb96c206a6c01cd37c",
|
|||
|
"675a4e80564044bcae99c2538f63a99b",
|
|||
|
"5635f5fc59164e4aa69e2f4dd7301ba0",
|
|||
|
"0173b0fc70304a3aa5bdc2e390b8eab7",
|
|||
|
"ed483488e6e342a7a6291ee50bd3fcb4",
|
|||
|
"949608b13ed84264a75d7a694a2200e5",
|
|||
|
"0aeec2aada234621ba269e27bf0087e3",
|
|||
|
"03e1daaf6086423d9017a4af01b87e3c",
|
|||
|
"6b38b3c3c69d445684d7d98ce68358eb",
|
|||
|
"34d8575762114e7d9d7bdf8c066593a5",
|
|||
|
"6fdc6045767f459eb13a71f1c9589c78",
|
|||
|
"96e3eda032cf4175bd5bde95690786e7",
|
|||
|
"c973e4a3d73d46d7ab5fb67661f05505",
|
|||
|
"cbc2e2816b514899aa00dab172ef9775",
|
|||
|
"fb989ccef0454171b0affbb3b0ed1519",
|
|||
|
"b00a57bbc2984b25b080cf426fc9d93a",
|
|||
|
"fe067ac0f4774e4b95e653861fb29420",
|
|||
|
"a0a5a49ca89e4e7c8176f51e9174a031",
|
|||
|
"45d07b61c0124913869a6fb15c51a31b",
|
|||
|
"546ed9780904486493b0205e3499d369",
|
|||
|
"bd906e3ecf9b416cb25ff8d4e3e1a4ce",
|
|||
|
"f5af9e6f7ad64571b095ec99f0d2359e",
|
|||
|
"aa439d0201c24b009c5c5ffc0dc0aa3e",
|
|||
|
"6db043789b9344c1a57d4ffffa84b5d6",
|
|||
|
"073e5f22a1b745eabd117e5432196d2a",
|
|||
|
"48e4ccd21dfd4205a849cbed8089d00f",
|
|||
|
"81fb5f28fbd84991aced3b675bda8538",
|
|||
|
"cce1d515c3a148998a17136092ef9ace",
|
|||
|
"104acfe0f696434c96ba08ce69d01da1",
|
|||
|
"6da323d419e143ccbf8350845408931a",
|
|||
|
"b50ea57ac26b4633b1af3dd04d3e2b64",
|
|||
|
"aa94fe5c7b214174914ecf6de596b54d",
|
|||
|
"a3568db1b59e482cafa6498dac466987",
|
|||
|
"dd0264ee53db4169a35e0f2da43dbb8e",
|
|||
|
"3145f62cdc374b21adedea938ebc859f",
|
|||
|
"e3accfa88994452b99ca84e02004ad7d",
|
|||
|
"0e6f62263f9145058d14d64984815f2d",
|
|||
|
"4a92ebfa58524bf39e4540499e78d147",
|
|||
|
"5518f43264274fa3889d6203c121f371",
|
|||
|
"b5b5094042f0409cb8ad74268ba6aae0",
|
|||
|
"0cfa4d6c99be4dc6b86f9b46ff6c1e78",
|
|||
|
"be14af4415784c13872fcae41f6c6d47",
|
|||
|
"35ea4cf25ff24b69aebe509a85c34423",
|
|||
|
"9dab404555984569bd4f32eb39f9b4c0",
|
|||
|
"8767a2b17c22493092e68f8f1bf7d8aa",
|
|||
|
"fdfae47e9d564aefb43c0d57b65211cd",
|
|||
|
"898d0fb80047486dba6e84719d5e2a37",
|
|||
|
"a893a1d6eb9d4c988bf0cf92b9eeef96",
|
|||
|
"5c13b264a4e942f29719ee21fa9e013f",
|
|||
|
"648bc98d57fe4eac96febe4c7f995ab4",
|
|||
|
"0cae3e14e6104afdac42f102eeacd73b",
|
|||
|
"6c92726f8db14578922d1e0025f81703",
|
|||
|
"c095387effea469bb2c353ec7c669dad",
|
|||
|
"70ed33d0fca842fd99ab6b591d9c7163",
|
|||
|
"01c78ca91da0472db2c56442eb6bf3ac",
|
|||
|
"a5b90b47178e4a779dfceae1f1405495",
|
|||
|
"25bf76052a3e41bcafc10281f771f044",
|
|||
|
"52097a4204e642d3ad7f6e50fd4546e7",
|
|||
|
"8e4110fefcae44d09a03b3757142ad5d"
|
|||
|
]
|
|||
|
},
|
|||
|
"id": "jKG14DGYbwku",
|
|||
|
"outputId": "f9946643-9a44-475e-9d11-31613ce1a912",
|
|||
|
"vscode": {
|
|||
|
"languageId": "python"
|
|||
|
}
|
|||
|
},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"application/vnd.jupyter.widget-view+json": {
|
|||
|
"model_id": "ceb9cabad998432ebd4541a41ad69e76",
|
|||
|
"version_major": 2,
|
|||
|
"version_minor": 0
|
|||
|
},
|
|||
|
"text/plain": [
|
|||
|
"Downloading (…)lve/main/config.yaml: 0%| | 0.00/500 [00:00<?, ?B/s]"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"application/vnd.jupyter.widget-view+json": {
|
|||
|
"model_id": "3ad4b30c0c6640fc921b782ff2a84545",
|
|||
|
"version_major": 2,
|
|||
|
"version_minor": 0
|
|||
|
},
|
|||
|
"text/plain": [
|
|||
|
"Downloading pytorch_model.bin: 0%| | 0.00/17.7M [00:00<?, ?B/s]"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"application/vnd.jupyter.widget-view+json": {
|
|||
|
"model_id": "87b4741cc2174372ab2b3b31c45257ee",
|
|||
|
"version_major": 2,
|
|||
|
"version_minor": 0
|
|||
|
},
|
|||
|
"text/plain": [
|
|||
|
"Downloading (…)/2022.07/config.yaml: 0%| | 0.00/318 [00:00<?, ?B/s]"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"application/vnd.jupyter.widget-view+json": {
|
|||
|
"model_id": "ed483488e6e342a7a6291ee50bd3fcb4",
|
|||
|
"version_major": 2,
|
|||
|
"version_minor": 0
|
|||
|
},
|
|||
|
"text/plain": [
|
|||
|
"Downloading (…)ain/hyperparams.yaml: 0.00B [00:00, ?B/s]"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"application/vnd.jupyter.widget-view+json": {
|
|||
|
"model_id": "b00a57bbc2984b25b080cf426fc9d93a",
|
|||
|
"version_major": 2,
|
|||
|
"version_minor": 0
|
|||
|
},
|
|||
|
"text/plain": [
|
|||
|
"Downloading embedding_model.ckpt: 0%| | 0.00/83.3M [00:00<?, ?B/s]"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"application/vnd.jupyter.widget-view+json": {
|
|||
|
"model_id": "81fb5f28fbd84991aced3b675bda8538",
|
|||
|
"version_major": 2,
|
|||
|
"version_minor": 0
|
|||
|
},
|
|||
|
"text/plain": [
|
|||
|
"Downloading (…)an_var_norm_emb.ckpt: 0%| | 0.00/1.92k [00:00<?, ?B/s]"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"application/vnd.jupyter.widget-view+json": {
|
|||
|
"model_id": "4a92ebfa58524bf39e4540499e78d147",
|
|||
|
"version_major": 2,
|
|||
|
"version_minor": 0
|
|||
|
},
|
|||
|
"text/plain": [
|
|||
|
"Downloading classifier.ckpt: 0%| | 0.00/5.53M [00:00<?, ?B/s]"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"application/vnd.jupyter.widget-view+json": {
|
|||
|
"model_id": "5c13b264a4e942f29719ee21fa9e013f",
|
|||
|
"version_major": 2,
|
|||
|
"version_minor": 0
|
|||
|
},
|
|||
|
"text/plain": [
|
|||
|
"Downloading (…)in/label_encoder.txt: 0.00B [00:00, ?B/s]"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"output_type": "display_data"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"from pyannote.audio import Pipeline\n",
|
|||
|
"pipeline = Pipeline.from_pretrained('pyannote/speaker-diarization', use_auth_token= (access_token) or True )"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 33,
|
|||
|
"metadata": {
|
|||
|
"colab": {
|
|||
|
"base_uri": "https://localhost:8080/"
|
|||
|
},
|
|||
|
"id": "OjsUVdR2jH0n",
|
|||
|
"outputId": "6229f26d-6f46-45be-ce86-367536447e50"
|
|||
|
},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"text/plain": [
|
|||
|
"<pyannote.audio.pipelines.speaker_diarization.SpeakerDiarization at 0x7fd1e08c3d30>"
|
|||
|
]
|
|||
|
},
|
|||
|
"execution_count": 33,
|
|||
|
"metadata": {},
|
|||
|
"output_type": "execute_result"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
|
|||
|
"pipeline.to(device)"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"id": "ImKMcCr5W5Nw"
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"Running pyannote.audio to generate the diarizations."
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 21,
|
|||
|
"metadata": {
|
|||
|
"id": "yA4xiEefft9Z",
|
|||
|
"vscode": {
|
|||
|
"languageId": "python"
|
|||
|
}
|
|||
|
},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"DEMO_FILE = {'uri': 'blabla', 'audio': 'input_prep.wav'}\n",
|
|||
|
"dz = pipeline(DEMO_FILE) \n",
|
|||
|
"\n",
|
|||
|
"with open(\"diarization.txt\", \"w\") as text_file:\n",
|
|||
|
" text_file.write(str(dz))"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 22,
|
|||
|
"metadata": {
|
|||
|
"colab": {
|
|||
|
"base_uri": "https://localhost:8080/"
|
|||
|
},
|
|||
|
"id": "GHIY2MB3Vz3e",
|
|||
|
"outputId": "1accc8bb-f5a1-4afd-9d16-fdf7ca4f4403",
|
|||
|
"vscode": {
|
|||
|
"languageId": "python"
|
|||
|
}
|
|||
|
},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"(<Segment(2.74219, 5.40844)>, 'U', 'SPEAKER_01')\n",
|
|||
|
"(<Segment(5.74594, 9.25594)>, 'A', 'SPEAKER_00')\n",
|
|||
|
"(<Segment(9.72844, 12.6647)>, 'V', 'SPEAKER_01')\n",
|
|||
|
"(<Segment(13.0697, 14.0147)>, 'B', 'SPEAKER_00')\n",
|
|||
|
"(<Segment(14.5041, 16.9678)>, 'W', 'SPEAKER_01')\n",
|
|||
|
"(<Segment(17.4741, 20.7478)>, 'C', 'SPEAKER_00')\n",
|
|||
|
"(<Segment(21.4566, 24.0047)>, 'D', 'SPEAKER_00')\n",
|
|||
|
"(<Segment(24.7303, 29.2528)>, 'X', 'SPEAKER_01')\n",
|
|||
|
"(<Segment(29.2528, 30.7041)>, 'E', 'SPEAKER_00')\n",
|
|||
|
"(<Segment(31.3791, 32.1553)>, 'F', 'SPEAKER_00')\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"print(*list(dz.itertracks(yield_label = True))[:10], sep=\"\\n\")"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"id": "Wp36eMedRkR0"
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"# Preparing audio files according to the diarization"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 23,
|
|||
|
"metadata": {
|
|||
|
"id": "KPGOaVpOH7pZ",
|
|||
|
"vscode": {
|
|||
|
"languageId": "python"
|
|||
|
}
|
|||
|
},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"def millisec(timeStr):\n",
|
|||
|
" spl = timeStr.split(\":\")\n",
|
|||
|
" s = (int)((int(spl[0]) * 60 * 60 + int(spl[1]) * 60 + float(spl[2]) )* 1000)\n",
|
|||
|
" return s"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"id": "_Co3BIIH6aW4"
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"Grouping the diarization segments according to the speaker."
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 24,
|
|||
|
"metadata": {
|
|||
|
"colab": {
|
|||
|
"base_uri": "https://localhost:8080/"
|
|||
|
},
|
|||
|
"id": "umQdzNFzcP2f",
|
|||
|
"outputId": "2c5e3cf7-b6a2-42ad-cc13-5db04b891370",
|
|||
|
"vscode": {
|
|||
|
"languageId": "python"
|
|||
|
}
|
|||
|
},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"['[ 00:00:02.742 --> 00:00:05.408] U SPEAKER_01']\n",
|
|||
|
"['[ 00:00:05.745 --> 00:00:09.255] A SPEAKER_00']\n",
|
|||
|
"['[ 00:00:09.728 --> 00:00:12.664] V SPEAKER_01']\n",
|
|||
|
"['[ 00:00:13.069 --> 00:00:14.014] B SPEAKER_00']\n",
|
|||
|
"['[ 00:00:14.504 --> 00:00:16.967] W SPEAKER_01']\n",
|
|||
|
"['[ 00:00:17.474 --> 00:00:20.747] C SPEAKER_00', '[ 00:00:21.456 --> 00:00:24.004] D SPEAKER_00']\n",
|
|||
|
"['[ 00:00:24.730 --> 00:00:29.252] X SPEAKER_01']\n",
|
|||
|
"['[ 00:00:29.252 --> 00:00:30.704] E SPEAKER_00', '[ 00:00:31.379 --> 00:00:32.155] F SPEAKER_00', '[ 00:00:32.796 --> 00:00:33.724] G SPEAKER_00', '[ 00:00:34.517 --> 00:00:35.783] H SPEAKER_00']\n",
|
|||
|
"['[ 00:00:36.306 --> 00:00:42.735] Y SPEAKER_01']\n",
|
|||
|
"['[ 00:00:43.140 --> 00:00:46.026] I SPEAKER_00', '[ 00:00:46.650 --> 00:00:48.287] J SPEAKER_00']\n",
|
|||
|
"['[ 00:00:48.895 --> 00:00:53.721] Z SPEAKER_01']\n",
|
|||
|
"['[ 00:00:53.924 --> 00:00:54.936] K SPEAKER_00']\n",
|
|||
|
"['[ 00:00:55.240 --> 00:00:55.780] AA SPEAKER_01']\n",
|
|||
|
"['[ 00:00:56.320 --> 00:00:57.299] L SPEAKER_00', '[ 00:00:58.024 --> 00:00:59.307] M SPEAKER_00', '[ 00:01:00.117 --> 00:01:03.509] N SPEAKER_00']\n",
|
|||
|
"['[ 00:01:03.509 --> 00:01:12.570] AB SPEAKER_01']\n",
|
|||
|
"['[ 00:01:13.161 --> 00:01:15.034] O SPEAKER_00']\n",
|
|||
|
"['[ 00:01:15.962 --> 00:01:18.679] AC SPEAKER_01']\n",
|
|||
|
"['[ 00:01:18.679 --> 00:01:19.202] P SPEAKER_00']\n",
|
|||
|
"['[ 00:01:19.675 --> 00:01:23.134] AD SPEAKER_01']\n",
|
|||
|
"['[ 00:01:24.467 --> 00:01:24.839] Q SPEAKER_00']\n",
|
|||
|
"['[ 00:01:27.100 --> 00:01:35.892] AE SPEAKER_01']\n",
|
|||
|
"['[ 00:01:36.263 --> 00:01:38.541] R SPEAKER_00']\n",
|
|||
|
"['[ 00:01:38.879 --> 00:01:40.296] AF SPEAKER_01']\n",
|
|||
|
"['[ 00:01:40.785 --> 00:01:41.545] S SPEAKER_00']\n",
|
|||
|
"['[ 00:01:42.203 --> 00:01:43.975] AG SPEAKER_01']\n",
|
|||
|
"['[ 00:01:44.464 --> 00:01:45.831] T SPEAKER_00']\n",
|
|||
|
"['[ 00:01:46.320 --> 00:01:49.864] AH SPEAKER_01']\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"import re\n",
|
|||
|
"dzs = open('diarization.txt').read().splitlines()\n",
|
|||
|
"\n",
|
|||
|
"groups = []\n",
|
|||
|
"g = []\n",
|
|||
|
"lastend = 0\n",
|
|||
|
"\n",
|
|||
|
"for d in dzs: \n",
|
|||
|
" if g and (g[0].split()[-1] != d.split()[-1]): #same speaker\n",
|
|||
|
" groups.append(g)\n",
|
|||
|
" g = []\n",
|
|||
|
" \n",
|
|||
|
" g.append(d)\n",
|
|||
|
" \n",
|
|||
|
" end = re.findall('[0-9]+:[0-9]+:[0-9]+\\.[0-9]+', string=d)[1]\n",
|
|||
|
" end = millisec(end)\n",
|
|||
|
" if (lastend > end): #segment engulfed by a previous segment\n",
|
|||
|
" groups.append(g)\n",
|
|||
|
" g = [] \n",
|
|||
|
" else:\n",
|
|||
|
" lastend = end\n",
|
|||
|
"if g:\n",
|
|||
|
" groups.append(g)\n",
|
|||
|
"print(*groups, sep='\\n')"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"id": "JOuf8CuRQeZo"
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"Save the audio part corresponding to each diarization group."
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 25,
|
|||
|
"metadata": {
|
|||
|
"colab": {
|
|||
|
"base_uri": "https://localhost:8080/"
|
|||
|
},
|
|||
|
"id": "dRQPUW4Mzvfn",
|
|||
|
"outputId": "7d297cbb-50a4-4350-af8e-0b5b707840a1",
|
|||
|
"vscode": {
|
|||
|
"languageId": "python"
|
|||
|
}
|
|||
|
},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"group 0: 2742--5408\n",
|
|||
|
"group 1: 5745--9255\n",
|
|||
|
"group 2: 9728--12664\n",
|
|||
|
"group 3: 13069--14014\n",
|
|||
|
"group 4: 14504--16967\n",
|
|||
|
"group 5: 17474--24004\n",
|
|||
|
"group 6: 24730--29252\n",
|
|||
|
"group 7: 29252--35783\n",
|
|||
|
"group 8: 36306--42735\n",
|
|||
|
"group 9: 43140--48287\n",
|
|||
|
"group 10: 48895--53721\n",
|
|||
|
"group 11: 53924--54936\n",
|
|||
|
"group 12: 55240--55780\n",
|
|||
|
"group 13: 56320--63509\n",
|
|||
|
"group 14: 63509--72570\n",
|
|||
|
"group 15: 73161--75034\n",
|
|||
|
"group 16: 75962--78679\n",
|
|||
|
"group 17: 78679--79202\n",
|
|||
|
"group 18: 79675--83134\n",
|
|||
|
"group 19: 84467--84839\n",
|
|||
|
"group 20: 87100--95892\n",
|
|||
|
"group 21: 96263--98541\n",
|
|||
|
"group 22: 98878--100295\n",
|
|||
|
"group 23: 100785--101545\n",
|
|||
|
"group 24: 102203--103975\n",
|
|||
|
"group 25: 104464--105831\n",
|
|||
|
"group 26: 106320--109864\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"audio = AudioSegment.from_wav(\"input_prep.wav\")\n",
|
|||
|
"gidx = -1\n",
|
|||
|
"for g in groups:\n",
|
|||
|
" start = re.findall('[0-9]+:[0-9]+:[0-9]+\\.[0-9]+', string=g[0])[0]\n",
|
|||
|
" end = re.findall('[0-9]+:[0-9]+:[0-9]+\\.[0-9]+', string=g[-1])[1]\n",
|
|||
|
" start = millisec(start) #- spacermilli\n",
|
|||
|
" end = millisec(end) #- spacermilli\n",
|
|||
|
" gidx += 1\n",
|
|||
|
" audio[start:end].export(str(gidx) + '.wav', format='wav')\n",
|
|||
|
" print(f\"group {gidx}: {start}--{end}\")"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"id": "rv2GYZCsLKBJ"
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"Freeing up some memory"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": null,
|
|||
|
"metadata": {
|
|||
|
"id": "cONumKWUjfus",
|
|||
|
"vscode": {
|
|||
|
"languageId": "python"
|
|||
|
}
|
|||
|
},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"del DEMO_FILE, pipeline, spacer, audio, dz"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"id": "AmxtB0k4n8lY"
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"# Whisper's Transcriptions"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"id": "pBO8IpdiRQ0X"
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"Run whisper on all audio files. Whisper generates the transcription and writes it to a file."
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 34,
|
|||
|
"metadata": {
|
|||
|
"id": "odstu62EnMLL",
|
|||
|
"vscode": {
|
|||
|
"languageId": "python"
|
|||
|
}
|
|||
|
},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"import json\n",
|
|||
|
"for i in range(len(groups)):\n",
|
|||
|
" audiof = str(i) + '.wav'\n",
|
|||
|
" result = model.transcribe(audio=audiof, language='en', word_timestamps=True)#, initial_prompt=result.get('text', \"\"))\n",
|
|||
|
" with open(str(i)+'.json', \"w\") as outfile:\n",
|
|||
|
" json.dump(result, outfile, indent=4) "
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"id": "u_UyWQMXpB3N"
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"# Generating the HTML and/or txt file from the Transcriptions and the Diarization"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"id": "V2qTkKD_30FG"
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"Change or add to the speaker names and collors bellow as you wish `(speaker, textbox color, speaker color)`."
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 35,
|
|||
|
"metadata": {
|
|||
|
"id": "j7EP6fO73wTY",
|
|||
|
"vscode": {
|
|||
|
"languageId": "python"
|
|||
|
}
|
|||
|
},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"def_boxclr = 'white'\n",
|
|||
|
"def_spkrclr = 'orange'"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"id": "KndDYy_xMpMq"
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"In the generated HTML, the transcriptions for each diarization group are written in a box, with the speaker name on the top. By clicking a transcription, the embedded video jumps to the right time ."
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 36,
|
|||
|
"metadata": {
|
|||
|
"id": "vKdx9Hwg630K",
|
|||
|
"vscode": {
|
|||
|
"languageId": "python"
|
|||
|
}
|
|||
|
},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"if Source == 'Youtube':\n",
|
|||
|
" preS = '<!DOCTYPE html>\\n<html lang=\"en\">\\n\\n<head>\\n\\t<meta charset=\"UTF-8\">\\n\\t<meta name=\"viewport\" content=\"width=device-width, initial-scale=1.0\">\\n\\t<meta http-equiv=\"X-UA-Compatible\" content=\"ie=edge\">\\n\\t<title>' + \\\n",
|
|||
|
"video_title+ \\\n",
|
|||
|
"'</title>\\n\\t<style>\\n\\t\\tbody {\\n\\t\\t\\tfont-family: sans-serif;\\n\\t\\t\\tfont-size: 14px;\\n\\t\\t\\tcolor: #111;\\n\\t\\t\\tpadding: 0 0 1em 0;\\n\\t\\t\\tbackground-color: #efe7dd;\\n\\t\\t}\\n\\n\\t\\ttable {\\n\\t\\t\\tborder-spacing: 10px;\\n\\t\\t}\\n\\n\\t\\tth {\\n\\t\\t\\ttext-align: left;\\n\\t\\t}\\n\\n\\t\\t.lt {\\n\\t\\t\\tcolor: inherit;\\n\\t\\t\\ttext-decoration: inherit;\\n\\t\\t}\\n\\n\\t\\t.l {\\n\\t\\t\\tcolor: #050;\\n\\t\\t}\\n\\n\\t\\t.s {\\n\\t\\t\\tdisplay: inline-block;\\n\\t\\t}\\n\\n\\t\\t.c {\\n\\t\\t\\tdisplay: inline-block;\\n\\t\\t}\\n\\n\\t\\t.e {\\n\\t\\t\\t/*background-color: white; Changing background color */\\n\\t\\t\\tborder-radius: 10px;\\n\\t\\t\\t/* Making border radius */\\n\\t\\t\\twidth: 50%;\\n\\t\\t\\t/* Making auto-sizable width */\\n\\t\\t\\tpadding: 0 0 0 0;\\n\\t\\t\\t/* Making space around letters */\\n\\t\\t\\tfont-size: 14px;\\n\\t\\t\\t/* Changing font size */\\n\\t\\t\\tmargin-bottom: 0;\\n\\t\\t}\\n\\n\\t\\t.t {\\n\\t\\t\\tdisplay: inline-block;\\n\\t\\t}\\n\\n\\t\\t#player-div {\\n\\t\\t\\tposition: sticky;\\n\\t\\t\\ttop: 20px;\\n\\t\\t\\tfloat: right;\\n\\t\\t\\twidth: 40%\\n\\t\\t}\\n\\n\\t\\t#player {\\n\\t\\t\\taspect-ratio: 16 / 9;\\n\\t\\t\\twidth: 100%;\\n\\t\\t\\theight: auto;\\n\\n\\t\\t}\\n\\n\\t\\ta {\\n\\t\\t\\tdisplay: inline;\\n\\t\\t}\\n\\t</style>\\n\\t<script>\\n\\t\\tvar tag = document.createElement(\\'script\\');\\n\\t\\ttag.src = \"https://www.youtube.com/iframe_api\";\\n\\t\\tvar firstScriptTag = document.getElementsByTagName(\\'script\\')[0];\\n\\t\\tfirstScriptTag.parentNode.insertBefore(tag, firstScriptTag);\\n\\t\\tvar player;\\n\\t\\tfunction onYouTubeIframeAPIReady() {\\n\\t\\t\\tplayer = new YT.Player(\\'player\\', {\\n\\t\\t\\t\\t//height: \\'210\\',\\n\\t\\t\\t\\t//width: \\'340\\',\\n\\t\\t\\t\\tvideoId: \\''+ \\\n",
|
|||
|
"video_id + \\\n",
|
|||
|
"'\\',\\n\\t\\t\\t});\\n\\n\\n\\n\\t\\t\\t// This is the source \"window\" that will emit the events.\\n\\t\\t\\tvar iframeWindow = player.getIframe().contentWindow;\\n\\t\\t\\tvar lastword = null;\\n\\n\\t\\t\\t// So we can compare against new updates.\\n\\t\\t\\tvar lastTimeUpdate = \"-1\";\\n\\n\\t\\t\\t// Listen to events triggered by postMessage,\\n\\t\\t\\t// this is how different windows in a browser\\n\\t\\t\\t// (such as a popup or iFrame) can communicate.\\n\\t\\t\\t// See: https://developer.mozilla.org/en-US/docs/Web/API/Window/postMessage\\n\\t\\t\\twindow.addEventListener(\"message\", function (event) {\\n\\t\\t\\t\\t// Check that the event was sent from the YouTube IFrame.\\n\\t\\t\\t\\tif (event.source === iframeWindow) {\\n\\t\\t\\t\\t\\tvar data = JSON.parse(event.data);\\n\\n\\t\\t\\t\\t\\t// The \"infoDelivery\" event is used by YT to transmit any\\n\\t\\t\\t\\t\\t// kind of information change in the player,\\n\\t\\t\\t\\t\\t// such as the current time or a playback quality change.\\n\\t\\t\\t\\t\\tif (\\n\\t\\t\\t\\t\\t\\tdata.event === \"infoDelivery\" &&\\n\\t\\t\\t\\t\\t\\tdata.info &&\\n\\t\\t\\t\\t\\t\\tdata.info.currentTime\\n\\t\\t\\t\\t\\t) {\\n\\t\\t\\t\\t\\t\\t// currentTime is emitted very frequently (milliseconds),\\n\\t\\t\\t\\t\\t\\t// but we only care about whole second changes.\\n\\t\\t\\t\\t\\t\\tvar ts = (data.info.currentTime).toFixed(1).toString();\\n\\t\\t\\t\\t\\t\\tts = (Math.round((data.info.currentTime) * 5) / 5).toFixed(1);\\n\\t\\t\\t\\t\\t\\tts = ts.toString();\\n\\t\\t\\t\\t\\t\\tconsole.log(ts)\\n\\t\\t\\t\\t\\t\\tif (ts !== lastTimeUpdate) {\\n\\t\\t\\t\\t\\t\\t\\tlastTimeUpdate = ts;\\n\\n\\t\\t\\t\\t\\t\\t\\t// It\\'s now up to you to format the time.\\n\\t\\t\\t\\t\\t\\t\\t//document.getElementById(\"time2\").innerHTML = time;\\n\\t\\t\\t\\t\\t\\t\\tword = document.getElementById(ts)\\n\\t\\t\\t\\t\\t\\t\\tif (word) {\\n\\t\\t\\t\\t\\t\\t\\t\\tif (lastword) {\\n\\t\\t\\t\\t\\t\\t\\t\\t\\tlastword.style.fontWeight = \\'normal\\';\\n\\t\\t\\t\\t\\t\\t\\t\\t}\\n\\t\\t\\t\\t\\t\\t\\t\\tlastword = word;\\n\\t\\t\\t\\t\\t\\t\\t\\t//word.style.textDecoration = \\'underline\\';\\n\\t\\t\\t\\t\\t\\t\\t\\tword.style.fontWeight = \\'bold\\';\\n\\n\\t\\t\\t\\t\\t\\t\\t\\tlet toggle = document.getElementById(\"autoscroll\");\\n\\t\\t\\t\\t\\t\\t\\t\\tif (toggle.checked) {\\n\\t\\t\\t\\t\\t\\t\\t\\t\\tlet position = word.offsetTop - 20;\\n\\t\\t\\t\\t\\t\\t\\t\\t\\twindow.scrollTo({\\n\\t\\t\\t\\t\\t\\t\\t\\t\\t\\ttop: position,\\n\\t\\t\\t\\t\\t\\t\\t\\t\\t\\tbehavior: \\'smooth\\'\\n\\t\\t\\t\\t\\t\\t\\t\\t\\t});\\n\\t\\t\\t\\t\\t\\t\\t\\t}\\n\\n\\t\\t\\t\\t\\t\\t\\t}\\n\\t\\t\\t\\t\\t\\t}\\n\\t\\t\\t\\t\\t}\\n\\t\\t\\t\\t}\\n\\t\\t\\t})\\n\\t\\t}\\n\\t\\tfunction jumptoTime(timepoint, id) {\\n\\t\\t\\tevent.preventDefault();\\n\\t\\t\\thistory.pushState(null, null, \"#\" + id);\\n\\t\\t\\tplayer.seekTo(timepoint);\\n\\t\\t\\tplayer.playVideo();\\n\\t\\t}\\n\\t</script>\\n</head>\\n\\n<body>\\n\\t<h2>' + \\\n",
|
|||
|
"video_title + \\\n",
|
|||
|
"'</h2>\\n\\t<i>Click on a part of the transcription, to jump to its video, and get an anchor to it in the address\\n\\t\\tbar<br><br></i>\\n\\t<div id=\"player-div\">\\n\\t\\t<div id=\"player\"></div>\\n\\t\\t<div><label for=\"autoscroll\">auto-scroll: </label>\\n\\t\\t\\t<input type=\"checkbox\" id=\"autoscroll\" checked>\\n\\t\\t</div>\\n\\t</div>\\n '\n",
|
|||
|
"else:\n",
|
|||
|
" preS = '\\n<!DOCTYPE html>\\n<html lang=\"en\">\\n\\n<head>\\n\\t<meta charset=\"UTF-8\">\\n\\t<meta name=\"viewport\" content=\"whtmlidth=device-width, initial-scale=1.0\">\\n\\t<meta http-equiv=\"X-UA-Compatible\" content=\"ie=edge\">\\n\\t<title>' + \\\n",
|
|||
|
" audio_title+ \\\n",
|
|||
|
" '</title>\\n\\t<style>\\n\\t\\tbody {\\n\\t\\t\\tfont-family: sans-serif;\\n\\t\\t\\tfont-size: 14px;\\n\\t\\t\\tcolor: #111;\\n\\t\\t\\tpadding: 0 0 1em 0;\\n\\t\\t\\tbackground-color: #efe7dd;\\n\\t\\t}\\n\\n\\t\\ttable {\\n\\t\\t\\tborder-spacing: 10px;\\n\\t\\t}\\n\\n\\t\\tth {\\n\\t\\t\\ttext-align: left;\\n\\t\\t}\\n\\n\\t\\t.lt {\\n\\t\\t\\tcolor: inherit;\\n\\t\\t\\ttext-decoration: inherit;\\n\\t\\t}\\n\\n\\t\\t.l {\\n\\t\\t\\tcolor: #050;\\n\\t\\t}\\n\\n\\t\\t.s {\\n\\t\\t\\tdisplay: inline-block;\\n\\t\\t}\\n\\n\\t\\t.c {\\n\\t\\t\\tdisplay: inline-block;\\n\\t\\t}\\n\\n\\t\\t.e {\\n\\t\\t\\t/*background-color: white; Changing background color */\\n\\t\\t\\tborder-radius: 10px;\\n\\t\\t\\t/* Making border radius */\\n\\t\\t\\twidth: 50%;\\n\\t\\t\\t/* Making auto-sizable width */\\n\\t\\t\\tpadding: 0 0 0 0;\\n\\t\\t\\t/* Making space around letters */\\n\\t\\t\\tfont-size: 14px;\\n\\t\\t\\t/* Changing font size */\\n\\t\\t\\tmargin-bottom: 0;\\n\\t\\t}\\n\\n\\t\\t.t {\\n\\t\\t\\tdisplay: inline-block;\\n\\t\\t}\\n\\n\\t\\t#player-div {\\n\\t\\t\\tposition: sticky;\\n\\t\\t\\ttop: 20px;\\n\\t\\t\\tfloat: right;\\n\\t\\t\\twidth: 40%\\n\\t\\t}\\n\\n\\t\\t#player {\\n\\t\\t\\taspect-ratio: 16 / 9;\\n\\t\\t\\twidth: 100%;\\n\\t\\t\\theight: auto;\\n\\t\\t}\\n\\n\\t\\ta {\\n\\t\\t\\tdisplay: inline;\\n\\t\\t}\\n\\t</style>';\n",
|
|||
|
" preS += '\\n\\t<script>\\n\\twindow.onload = function () {\\n\\t\\t\\tvar player = document.getElementById(\"audio_player\");\\n\\t\\t\\tvar player;\\n\\t\\t\\tvar lastword = null;\\n\\n\\t\\t\\t// So we can compare against new updates.\\n\\t\\t\\tvar lastTimeUpdate = \"-1\";\\n\\n\\t\\t\\tsetInterval(function () {\\n\\t\\t\\t\\t// currentTime is checked very frequently (1 millisecond),\\n\\t\\t\\t\\t// but we only care about whole second changes.\\n\\t\\t\\t\\tvar ts = (player.currentTime).toFixed(1).toString();\\n\\t\\t\\t\\tts = (Math.round((player.currentTime) * 5) / 5).toFixed(1);\\n\\t\\t\\t\\tts = ts.toString();\\n\\t\\t\\t\\tconsole.log(ts);\\n\\t\\t\\t\\tif (ts !== lastTimeUpdate) {\\n\\t\\t\\t\\t\\tlastTimeUpdate = ts;\\n\\n\\t\\t\\t\\t\\t// Its now up to you to format the time.\\n\\t\\t\\t\\t\\tword = document.getElementById(ts)\\n\\t\\t\\t\\t\\tif (word) {\\n\\t\\t\\t\\t\\t\\tif (lastword) {\\n\\t\\t\\t\\t\\t\\t\\tlastword.style.fontWeight = \"normal\";\\n\\t\\t\\t\\t\\t\\t}\\n\\t\\t\\t\\t\\t\\tlastword = word;\\n\\t\\t\\t\\t\\t\\t//word.style.textDecoration = \"underline\";\\n\\t\\t\\t\\t\\t\\tword.style.fontWeight = \"bold\";\\n\\n\\t\\t\\t\\t\\t\\tlet toggle = document.getElementById(\"autoscroll\");\\n\\t\\t\\t\\t\\t\\tif (toggle.checked) {\\n\\t\\t\\t\\t\\t\\t\\tlet position = word.offsetTop - 20;\\n\\t\\t\\t\\t\\t\\t\\twindow.scrollTo({\\n\\t\\t\\t\\t\\t\\t\\t\\ttop: position,\\n\\t\\t\\t\\t\\t\\t\\t\\tbehavior: \"smooth\"\\n\\t\\t\\t\\t\\t\\t\\t});\\n\\t\\t\\t\\t\\t\\t}\\n\\t\\t\\t\\t\\t}\\n\\t\\t\\t\\t}\\n\\t\\t\\t}, 0.1);\\n\\t\\t}\\n\\n\\t\\tfunction jumptoTime(timepoint, id) {\\n\\t\\t\\tvar player = document.getElementById(\"audio_player\");\\n\\t\\t\\thistory.pushState(null, null, \"#\" + id);\\n\\t\\t\\tplayer.pause();\\n\\t\\t\\tplayer.currentTime = timepoint;\\n\\t\\t\\tplayer.play();\\n\\t\\t}\\n\\t\\t</script>\\n\\t</head>';\n",
|
|||
|
" preS += '\\n\\n<body>\\n\\t<h2>' + audio_title + '</h2>\\n\\t<i>Click on a part of the transcription, to jump to its portion of audio, and get an anchor to it in the address\\n\\t\\tbar<br><br></i>\\n\\t<div id=\"player-div\">\\n\\t\\t<div id=\"player\">\\n\\t\\t\\t<audio controls=\"controls\" id=\"audio_player\">\\n\\t\\t\\t\\t<source src=\"input.wav\" />\\n\\t\\t\\t</audio>\\n\\t\\t</div>\\n\\t\\t<div><label for=\"autoscroll\">auto-scroll: </label>\\n\\t\\t\\t<input type=\"checkbox\" id=\"autoscroll\" checked>\\n\\t\\t</div>\\n\\t</div>\\n';\n",
|
|||
|
"\n",
|
|||
|
"postS = '\\t</body>\\n</html>'"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 37,
|
|||
|
"metadata": {
|
|||
|
"colab": {
|
|||
|
"base_uri": "https://localhost:8080/"
|
|||
|
},
|
|||
|
"id": "vqO6Nd6YfZYa",
|
|||
|
"outputId": "047a6ee0-82e7-4613-fa03-0fee2606df12",
|
|||
|
"vscode": {
|
|||
|
"languageId": "python"
|
|||
|
}
|
|||
|
},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"captions saved to capspeaker.txt:\n",
|
|||
|
"[00:00:000.74 --> 00:00:003.14] [Call Center] Thank you for calling Martha's Flourish, TowneS60.\n",
|
|||
|
"[00:00:003.75 --> 00:00:007.17] [Customer] Hello, I'd like to order flowers and I think you have what I'm looking for.\n",
|
|||
|
"[00:00:007.73 --> 00:00:010.41] [Call Center] I'd be happy to take care of your order. May I have your name, please?\n",
|
|||
|
"[00:00:011.07 --> 00:00:011.87] [Customer] Randall Thomas.\n",
|
|||
|
"[00:00:013.10 --> 00:00:014.86] [Call Center] Randall Thomas, can you spell that for me?\n",
|
|||
|
"[00:00:015.65 --> 00:00:021.97] [Customer] Randall R-A-N-D-A-L-L, Bama D-H-O-M-A-N.\n",
|
|||
|
"[00:00:022.73 --> 00:00:024.31] [Call Center] Thank you for that information, Randall.\n",
|
|||
|
"[00:00:024.39 --> 00:00:027.07] [Call Center] May have your home or office number area code first.\n",
|
|||
|
"[00:00:027.25 --> 00:00:033.63] [Customer] Aircode 409, then 5-866-5088.\n",
|
|||
|
"[00:00:035.23 --> 00:00:040.41] [Call Center] That's 409-866-5088. Do you have a fax number or email address?\n",
|
|||
|
"[00:00:041.14 --> 00:00:046.26] [Customer] My email is randall.thomas at gmail.com\n",
|
|||
|
"[00:00:047.41 --> 00:00:051.41] [Call Center] Randall.Thomas at gmail.com may have your shipping address\n",
|
|||
|
"[00:00:051.92 --> 00:00:052.52] [Customer] 6800\n",
|
|||
|
"[00:00:053.24 --> 00:00:053.56] [Call Center] Okay.\n",
|
|||
|
"[00:00:054.32 --> 00:00:057.26] [Customer] Badass Avenue, Beaumont, Texas.\n",
|
|||
|
"[00:00:058.20 --> 00:01:000.78] [Customer] Zip code is 77706.\n",
|
|||
|
"[00:01:001.51 --> 00:01:006.35] [Call Center] Gladys Avenue, Beaumont, Texas, zip code 77706.\n",
|
|||
|
"[00:01:006.75 --> 00:01:008.03] [Call Center] Thank you for the information.\n",
|
|||
|
"[00:01:008.47 --> 00:01:010.33] [Call Center] What products were you interested in purchasing?\n",
|
|||
|
"[00:01:011.16 --> 00:01:012.80] [Customer] Red roses, probably a dozen.\n",
|
|||
|
"[00:01:013.96 --> 00:01:016.34] [Call Center] One dozen of red roses, do you want long stems?\n",
|
|||
|
"[00:01:016.68 --> 00:01:016.94] [Customer] Sure.\n",
|
|||
|
"[00:01:017.67 --> 00:01:020.92] [Call Center] Alright, Rano, let me process the order. One moment, please.\n",
|
|||
|
"[00:01:022.47 --> 00:01:022.73] [Customer] Okay.\n",
|
|||
|
"[00:01:025.10 --> 00:01:028.34] [Call Center] Randall, you are ordering one dozen long-stand red roses.\n",
|
|||
|
"[00:01:028.62 --> 00:01:032.86] [Call Center] The total amount of your order is $40, and it will be shipped to your address within\n",
|
|||
|
"[00:01:032.86 --> 00:01:033.68] [Call Center] 24 hours.\n",
|
|||
|
"[00:01:034.26 --> 00:01:036.34] [Customer] I was thinking of delivering my roses again.\n",
|
|||
|
"[00:01:036.88 --> 00:01:037.98] [Call Center] within 24 hours.\n",
|
|||
|
"[00:01:038.78 --> 00:01:039.53] [Customer] Okay, no problem.\n",
|
|||
|
"[00:01:040.20 --> 00:01:041.84] [Call Center] Is there anything else I can help you with?\n",
|
|||
|
"[00:01:042.70 --> 00:01:043.64] [Customer] That's all for now, thanks.\n",
|
|||
|
"[00:01:044.32 --> 00:01:047.74] [Call Center] No problem, Randall. Thank you for calling Martha's Flourish. Have a nice day.\n",
|
|||
|
"\n",
|
|||
|
"\n",
|
|||
|
"captions saved to capspeaker.html:\n",
|
|||
|
"<!DOCTYPE html>\n",
|
|||
|
"<html lang=\"en\">\n",
|
|||
|
"\n",
|
|||
|
"<head>\n",
|
|||
|
"\t<meta charset=\"UTF-8\">\n",
|
|||
|
"\t<meta name=\"viewport\" content=\"width=device-width, initial-scale=1.0\">\n",
|
|||
|
"\t<meta http-equiv=\"X-UA-Compatible\" content=\"ie=edge\">\n",
|
|||
|
"\t<title></title>\n",
|
|||
|
"\t<style>\n",
|
|||
|
"\t\tbody {\n",
|
|||
|
"\t\t\tfont-family: sans-serif;\n",
|
|||
|
"\t\t\tfont-size: 14px;\n",
|
|||
|
"\t\t\tcolor: #111;\n",
|
|||
|
"\t\t\tpadding: 0 0 1em 0;\n",
|
|||
|
"\t\t\tbackground-color: #efe7dd;\n",
|
|||
|
"\t\t}\n",
|
|||
|
"\n",
|
|||
|
"\t\ttable {\n",
|
|||
|
"\t\t\tborder-spacing: 10px;\n",
|
|||
|
"\t\t}\n",
|
|||
|
"\n",
|
|||
|
"\t\tth {\n",
|
|||
|
"\t\t\ttext-align: left;\n",
|
|||
|
"\t\t}\n",
|
|||
|
"\n",
|
|||
|
"\t\t.lt {\n",
|
|||
|
"\t\t\tcolor: inherit;\n",
|
|||
|
"\t\t\ttext-decoration: inherit;\n",
|
|||
|
"\t\t}\n",
|
|||
|
"\n",
|
|||
|
"\t\t.l {\n",
|
|||
|
"\t\t\tcolor: #050;\n",
|
|||
|
"\t\t}\n",
|
|||
|
"\n",
|
|||
|
"\t\t.s {\n",
|
|||
|
"\t\t\tdisplay: inline-block;\n",
|
|||
|
"\t\t}\n",
|
|||
|
"\n",
|
|||
|
"\t\t.c {\n",
|
|||
|
"\t\t\tdisplay: inline-block;\n",
|
|||
|
"\t\t}\n",
|
|||
|
"\n",
|
|||
|
"\t\t.e {\n",
|
|||
|
"\t\t\t/*background-color: white; Changing background color */\n",
|
|||
|
"\t\t\tborder-radius: 10px;\n",
|
|||
|
"\t\t\t/* Making border radius */\n",
|
|||
|
"\t\t\twidth: 50%;\n",
|
|||
|
"\t\t\t/* Making auto-sizable width */\n",
|
|||
|
"\t\t\tpadding: 0 0 0 0;\n",
|
|||
|
"\t\t\t/* Making space around letters */\n",
|
|||
|
"\t\t\tfont-size: 14px;\n",
|
|||
|
"\t\t\t/* Changing font size */\n",
|
|||
|
"\t\t\tmargin-bottom: 0;\n",
|
|||
|
"\t\t}\n",
|
|||
|
"\n",
|
|||
|
"\t\t.t {\n",
|
|||
|
"\t\t\tdisplay: inline-block;\n",
|
|||
|
"\t\t}\n",
|
|||
|
"\n",
|
|||
|
"\t\t#player-div {\n",
|
|||
|
"\t\t\tposition: sticky;\n",
|
|||
|
"\t\t\ttop: 20px;\n",
|
|||
|
"\t\t\tfloat: right;\n",
|
|||
|
"\t\t\twidth: 40%\n",
|
|||
|
"\t\t}\n",
|
|||
|
"\n",
|
|||
|
"\t\t#player {\n",
|
|||
|
"\t\t\taspect-ratio: 16 / 9;\n",
|
|||
|
"\t\t\twidth: 100%;\n",
|
|||
|
"\t\t\theight: auto;\n",
|
|||
|
"\n",
|
|||
|
"\t\t}\n",
|
|||
|
"\n",
|
|||
|
"\t\ta {\n",
|
|||
|
"\t\t\tdisplay: inline;\n",
|
|||
|
"\t\t}\n",
|
|||
|
"\t</style>\n",
|
|||
|
"\t<script>\n",
|
|||
|
"\t\tvar tag = document.createElement('script');\n",
|
|||
|
"\t\ttag.src = \"https://www.youtube.com/iframe_api\";\n",
|
|||
|
"\t\tvar firstScriptTag = document.getElementsByTagName('script')[0];\n",
|
|||
|
"\t\tfirstScriptTag.parentNode.insertBefore(tag, firstScriptTag);\n",
|
|||
|
"\t\tvar player;\n",
|
|||
|
"\t\tfunction onYouTubeIframeAPIReady() {\n",
|
|||
|
"\t\t\tplayer = new YT.Player('player', {\n",
|
|||
|
"\t\t\t\t//height: '210',\n",
|
|||
|
"\t\t\t\t//width: '340',\n",
|
|||
|
"\t\t\t\tvideoId: '',\n",
|
|||
|
"\t\t\t});\n",
|
|||
|
"\n",
|
|||
|
"\n",
|
|||
|
"\n",
|
|||
|
"\t\t\t// This is the source \"window\" that will emit the events.\n",
|
|||
|
"\t\t\tvar iframeWindow = player.getIframe().contentWindow;\n",
|
|||
|
"\t\t\tvar lastword = null;\n",
|
|||
|
"\n",
|
|||
|
"\t\t\t// So we can compare against new updates.\n",
|
|||
|
"\t\t\tvar lastTimeUpdate = \"-1\";\n",
|
|||
|
"\n",
|
|||
|
"\t\t\t// Listen to events triggered by postMessage,\n",
|
|||
|
"\t\t\t// this is how different windows in a browser\n",
|
|||
|
"\t\t\t// (such as a popup or iFrame) can communicate.\n",
|
|||
|
"\t\t\t// See: https://developer.mozilla.org/en-US/docs/Web/API/Window/postMessage\n",
|
|||
|
"\t\t\twindow.addEventListener(\"message\", function (event) {\n",
|
|||
|
"\t\t\t\t// Check that the event was sent from the YouTube IFrame.\n",
|
|||
|
"\t\t\t\tif (event.source === iframeWindow) {\n",
|
|||
|
"\t\t\t\t\tvar data = JSON.parse(event.data);\n",
|
|||
|
"\n",
|
|||
|
"\t\t\t\t\t// The \"infoDelivery\" event is used by YT to transmit any\n",
|
|||
|
"\t\t\t\t\t// kind of information change in the player,\n",
|
|||
|
"\t\t\t\t\t// such as the current time or a playback quality change.\n",
|
|||
|
"\t\t\t\t\tif (\n",
|
|||
|
"\t\t\t\t\t\tdata.event === \"infoDelivery\" &&\n",
|
|||
|
"\t\t\t\t\t\tdata.info &&\n",
|
|||
|
"\t\t\t\t\t\tdata.info.currentTime\n",
|
|||
|
"\t\t\t\t\t) {\n",
|
|||
|
"\t\t\t\t\t\t// currentTime is emitted very frequently (milliseconds),\n",
|
|||
|
"\t\t\t\t\t\t// but we only care about whole second changes.\n",
|
|||
|
"\t\t\t\t\t\tvar ts = (data.info.currentTime).toFixed(1).toString();\n",
|
|||
|
"\t\t\t\t\t\tts = (Math.round((data.info.currentTime) * 5) / 5).toFixed(1);\n",
|
|||
|
"\t\t\t\t\t\tts = ts.toString();\n",
|
|||
|
"\t\t\t\t\t\tconsole.log(ts)\n",
|
|||
|
"\t\t\t\t\t\tif (ts !== lastTimeUpdate) {\n",
|
|||
|
"\t\t\t\t\t\t\tlastTimeUpdate = ts;\n",
|
|||
|
"\n",
|
|||
|
"\t\t\t\t\t\t\t// It's now up to you to format the time.\n",
|
|||
|
"\t\t\t\t\t\t\t//document.getElementById(\"time2\").innerHTML = time;\n",
|
|||
|
"\t\t\t\t\t\t\tword = document.getElementById(ts)\n",
|
|||
|
"\t\t\t\t\t\t\tif (word) {\n",
|
|||
|
"\t\t\t\t\t\t\t\tif (lastword) {\n",
|
|||
|
"\t\t\t\t\t\t\t\t\tlastword.style.fontWeight = 'normal';\n",
|
|||
|
"\t\t\t\t\t\t\t\t}\n",
|
|||
|
"\t\t\t\t\t\t\t\tlastword = word;\n",
|
|||
|
"\t\t\t\t\t\t\t\t//word.style.textDecoration = 'underline';\n",
|
|||
|
"\t\t\t\t\t\t\t\tword.style.fontWeight = 'bold';\n",
|
|||
|
"\n",
|
|||
|
"\t\t\t\t\t\t\t\tlet toggle = document.getElementById(\"autoscroll\");\n",
|
|||
|
"\t\t\t\t\t\t\t\tif (toggle.checked) {\n",
|
|||
|
"\t\t\t\t\t\t\t\t\tlet position = word.offsetTop - 20;\n",
|
|||
|
"\t\t\t\t\t\t\t\t\twindow.scrollTo({\n",
|
|||
|
"\t\t\t\t\t\t\t\t\t\ttop: position,\n",
|
|||
|
"\t\t\t\t\t\t\t\t\t\tbehavior: 'smooth'\n",
|
|||
|
"\t\t\t\t\t\t\t\t\t});\n",
|
|||
|
"\t\t\t\t\t\t\t\t}\n",
|
|||
|
"\n",
|
|||
|
"\t\t\t\t\t\t\t}\n",
|
|||
|
"\t\t\t\t\t\t}\n",
|
|||
|
"\t\t\t\t\t}\n",
|
|||
|
"\t\t\t\t}\n",
|
|||
|
"\t\t\t})\n",
|
|||
|
"\t\t}\n",
|
|||
|
"\t\tfunction jumptoTime(timepoint, id) {\n",
|
|||
|
"\t\t\tevent.preventDefault();\n",
|
|||
|
"\t\t\thistory.pushState(null, null, \"#\" + id);\n",
|
|||
|
"\t\t\tplayer.seekTo(timepoint);\n",
|
|||
|
"\t\t\tplayer.playVideo();\n",
|
|||
|
"\t\t}\n",
|
|||
|
"\t</script>\n",
|
|||
|
"</head>\n",
|
|||
|
"\n",
|
|||
|
"<body>\n",
|
|||
|
"\t<h2></h2>\n",
|
|||
|
"\t<i>Click on a part of the transcription, to jump to its video, and get an anchor to it in the address\n",
|
|||
|
"\t\tbar<br><br></i>\n",
|
|||
|
"\t<div id=\"player-div\">\n",
|
|||
|
"\t\t<div id=\"player\"></div>\n",
|
|||
|
"\t\t<div><label for=\"autoscroll\">auto-scroll: </label>\n",
|
|||
|
"\t\t\t<input type=\"checkbox\" id=\"autoscroll\" checked>\n",
|
|||
|
"\t\t</div>\n",
|
|||
|
"\t</div>\n",
|
|||
|
" <div class=\"e\" style=\"background-color: white\">\n",
|
|||
|
"<p style=\"margin:0;padding: 5px 10px 10px 10px;word-wrap:normal;white-space:normal;\">\n",
|
|||
|
"<span style=\"color:darkorange;font-weight: bold;\">Call Center</span><br>\n",
|
|||
|
"\t\t\t\t<a href=\"#00:00:000.74\" id=\"0.8\" class=\"lt\" onclick=\"jumptoTime(0, this.id)\"> Thank</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:000.92\" id=\"1.0\" class=\"lt\" onclick=\"jumptoTime(0, this.id)\"> you</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:001.00\" id=\"1.0\" class=\"lt\" onclick=\"jumptoTime(1, this.id)\"> for</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:001.14\" id=\"1.2\" class=\"lt\" onclick=\"jumptoTime(1, this.id)\"> calling</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:001.40\" id=\"1.4\" class=\"lt\" onclick=\"jumptoTime(1, this.id)\"> Martha's</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:001.92\" id=\"2.0\" class=\"lt\" onclick=\"jumptoTime(1, this.id)\"> Flourish,</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:002.46\" id=\"2.4\" class=\"lt\" onclick=\"jumptoTime(2, this.id)\"> TowneS60.</a><!--\n",
|
|||
|
"\t\t\t\t--></p>\n",
|
|||
|
"</div>\n",
|
|||
|
"<div class=\"e\" style=\"background-color: #e1ffc7\">\n",
|
|||
|
"<p style=\"margin:0;padding: 5px 10px 10px 10px;word-wrap:normal;white-space:normal;\">\n",
|
|||
|
"<span style=\"color:darkgreen;font-weight: bold;\">Customer</span><br>\n",
|
|||
|
"\t\t\t\t<a href=\"#00:00:003.75\" id=\"3.8\" class=\"lt\" onclick=\"jumptoTime(3, this.id)\"> Hello,</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:004.11\" id=\"4.2\" class=\"lt\" onclick=\"jumptoTime(4, this.id)\"> I'd</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:004.21\" id=\"4.2\" class=\"lt\" onclick=\"jumptoTime(4, this.id)\"> like</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:004.45\" id=\"4.4\" class=\"lt\" onclick=\"jumptoTime(4, this.id)\"> to</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:004.61\" id=\"4.6\" class=\"lt\" onclick=\"jumptoTime(4, this.id)\"> order</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:004.83\" id=\"4.8\" class=\"lt\" onclick=\"jumptoTime(4, this.id)\"> flowers</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:005.49\" id=\"5.4\" class=\"lt\" onclick=\"jumptoTime(5, this.id)\"> and</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:005.72\" id=\"5.8\" class=\"lt\" onclick=\"jumptoTime(5, this.id)\"> I</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:005.87\" id=\"5.8\" class=\"lt\" onclick=\"jumptoTime(5, this.id)\"> think</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:006.08\" id=\"6.0\" class=\"lt\" onclick=\"jumptoTime(6, this.id)\"> you</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:006.21\" id=\"6.2\" class=\"lt\" onclick=\"jumptoTime(6, this.id)\"> have</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:006.41\" id=\"6.4\" class=\"lt\" onclick=\"jumptoTime(6, this.id)\"> what</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:006.57\" id=\"6.6\" class=\"lt\" onclick=\"jumptoTime(6, this.id)\"> I'm</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:006.72\" id=\"6.8\" class=\"lt\" onclick=\"jumptoTime(6, this.id)\"> looking</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:006.95\" id=\"7.0\" class=\"lt\" onclick=\"jumptoTime(6, this.id)\"> for.</a><!--\n",
|
|||
|
"\t\t\t\t--></p>\n",
|
|||
|
"</div>\n",
|
|||
|
"<div class=\"e\" style=\"background-color: white\">\n",
|
|||
|
"<p style=\"margin:0;padding: 5px 10px 10px 10px;word-wrap:normal;white-space:normal;\">\n",
|
|||
|
"<span style=\"color:darkorange;font-weight: bold;\">Call Center</span><br>\n",
|
|||
|
"\t\t\t\t<a href=\"#00:00:007.73\" id=\"7.8\" class=\"lt\" onclick=\"jumptoTime(7, this.id)\"> I'd</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:007.97\" id=\"8.0\" class=\"lt\" onclick=\"jumptoTime(7, this.id)\"> be</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:008.07\" id=\"8.0\" class=\"lt\" onclick=\"jumptoTime(8, this.id)\"> happy</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:008.27\" id=\"8.2\" class=\"lt\" onclick=\"jumptoTime(8, this.id)\"> to</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:008.45\" id=\"8.4\" class=\"lt\" onclick=\"jumptoTime(8, this.id)\"> take</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:008.65\" id=\"8.6\" class=\"lt\" onclick=\"jumptoTime(8, this.id)\"> care</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:008.83\" id=\"8.8\" class=\"lt\" onclick=\"jumptoTime(8, this.id)\"> of</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:008.95\" id=\"9.0\" class=\"lt\" onclick=\"jumptoTime(8, this.id)\"> your</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:009.05\" id=\"9.0\" class=\"lt\" onclick=\"jumptoTime(9, this.id)\"> order.</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:009.41\" id=\"9.4\" class=\"lt\" onclick=\"jumptoTime(9, this.id)\"> May</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:009.51\" id=\"9.6\" class=\"lt\" onclick=\"jumptoTime(9, this.id)\"> I</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:009.59\" id=\"9.6\" class=\"lt\" onclick=\"jumptoTime(9, this.id)\"> have</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:009.77\" id=\"9.8\" class=\"lt\" onclick=\"jumptoTime(9, this.id)\"> your</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:009.91\" id=\"10.0\" class=\"lt\" onclick=\"jumptoTime(9, this.id)\"> name,</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:010.27\" id=\"10.2\" class=\"lt\" onclick=\"jumptoTime(10, this.id)\"> please?</a><!--\n",
|
|||
|
"\t\t\t\t--></p>\n",
|
|||
|
"</div>\n",
|
|||
|
"<div class=\"e\" style=\"background-color: #e1ffc7\">\n",
|
|||
|
"<p style=\"margin:0;padding: 5px 10px 10px 10px;word-wrap:normal;white-space:normal;\">\n",
|
|||
|
"<span style=\"color:darkgreen;font-weight: bold;\">Customer</span><br>\n",
|
|||
|
"\t\t\t\t<a href=\"#00:00:011.07\" id=\"11.0\" class=\"lt\" onclick=\"jumptoTime(11, this.id)\"> Randall</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:011.55\" id=\"11.6\" class=\"lt\" onclick=\"jumptoTime(11, this.id)\"> Thomas.</a><!--\n",
|
|||
|
"\t\t\t\t--></p>\n",
|
|||
|
"</div>\n",
|
|||
|
"<div class=\"e\" style=\"background-color: white\">\n",
|
|||
|
"<p style=\"margin:0;padding: 5px 10px 10px 10px;word-wrap:normal;white-space:normal;\">\n",
|
|||
|
"<span style=\"color:darkorange;font-weight: bold;\">Call Center</span><br>\n",
|
|||
|
"\t\t\t\t<a href=\"#00:00:013.10\" id=\"13.2\" class=\"lt\" onclick=\"jumptoTime(13, this.id)\"> Randall</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:013.44\" id=\"13.4\" class=\"lt\" onclick=\"jumptoTime(13, this.id)\"> Thomas,</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:013.78\" id=\"13.8\" class=\"lt\" onclick=\"jumptoTime(13, this.id)\"> can</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:013.88\" id=\"13.8\" class=\"lt\" onclick=\"jumptoTime(13, this.id)\"> you</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:014.02\" id=\"14.0\" class=\"lt\" onclick=\"jumptoTime(14, this.id)\"> spell</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:014.28\" id=\"14.2\" class=\"lt\" onclick=\"jumptoTime(14, this.id)\"> that</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:014.52\" id=\"14.6\" class=\"lt\" onclick=\"jumptoTime(14, this.id)\"> for</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:014.70\" id=\"14.8\" class=\"lt\" onclick=\"jumptoTime(14, this.id)\"> me?</a><!--\n",
|
|||
|
"\t\t\t\t--></p>\n",
|
|||
|
"</div>\n",
|
|||
|
"<div class=\"e\" style=\"background-color: #e1ffc7\">\n",
|
|||
|
"<p style=\"margin:0;padding: 5px 10px 10px 10px;word-wrap:normal;white-space:normal;\">\n",
|
|||
|
"<span style=\"color:darkgreen;font-weight: bold;\">Customer</span><br>\n",
|
|||
|
"\t\t\t\t<a href=\"#00:00:015.65\" id=\"15.6\" class=\"lt\" onclick=\"jumptoTime(15, this.id)\"> Randall</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:016.35\" id=\"16.4\" class=\"lt\" onclick=\"jumptoTime(16, this.id)\"> R</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:016.79\" id=\"16.8\" class=\"lt\" onclick=\"jumptoTime(16, this.id)\">-A</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:017.07\" id=\"17.0\" class=\"lt\" onclick=\"jumptoTime(17, this.id)\">-N</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:017.45\" id=\"17.4\" class=\"lt\" onclick=\"jumptoTime(17, this.id)\">-D</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:017.95\" id=\"18.0\" class=\"lt\" onclick=\"jumptoTime(17, this.id)\">-A</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:018.19\" id=\"18.2\" class=\"lt\" onclick=\"jumptoTime(18, this.id)\">-L</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:018.43\" id=\"18.4\" class=\"lt\" onclick=\"jumptoTime(18, this.id)\">-L,</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:019.57\" id=\"19.6\" class=\"lt\" onclick=\"jumptoTime(19, this.id)\"> Bama</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:019.91\" id=\"20.0\" class=\"lt\" onclick=\"jumptoTime(19, this.id)\"> D</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:020.77\" id=\"20.8\" class=\"lt\" onclick=\"jumptoTime(20, this.id)\">-H</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:021.07\" id=\"21.0\" class=\"lt\" onclick=\"jumptoTime(21, this.id)\">-O</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:021.43\" id=\"21.4\" class=\"lt\" onclick=\"jumptoTime(21, this.id)\">-M</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:021.75\" id=\"21.8\" class=\"lt\" onclick=\"jumptoTime(21, this.id)\">-A</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:021.89\" id=\"21.8\" class=\"lt\" onclick=\"jumptoTime(21, this.id)\">-N.</a><!--\n",
|
|||
|
"\t\t\t\t--></p>\n",
|
|||
|
"</div>\n",
|
|||
|
"<div class=\"e\" style=\"background-color: white\">\n",
|
|||
|
"<p style=\"margin:0;padding: 5px 10px 10px 10px;word-wrap:normal;white-space:normal;\">\n",
|
|||
|
"<span style=\"color:darkorange;font-weight: bold;\">Call Center</span><br>\n",
|
|||
|
"\t\t\t\t<a href=\"#00:00:022.73\" id=\"22.8\" class=\"lt\" onclick=\"jumptoTime(22, this.id)\"> Thank</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:022.93\" id=\"23.0\" class=\"lt\" onclick=\"jumptoTime(22, this.id)\"> you</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:023.01\" id=\"23.0\" class=\"lt\" onclick=\"jumptoTime(23, this.id)\"> for</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:023.11\" id=\"23.2\" class=\"lt\" onclick=\"jumptoTime(23, this.id)\"> that</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:023.33\" id=\"23.4\" class=\"lt\" onclick=\"jumptoTime(23, this.id)\"> information,</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:023.99\" id=\"24.0\" class=\"lt\" onclick=\"jumptoTime(23, this.id)\"> Randall.</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:024.39\" id=\"24.4\" class=\"lt\" onclick=\"jumptoTime(24, this.id)\"> May</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:024.49\" id=\"24.4\" class=\"lt\" onclick=\"jumptoTime(24, this.id)\"> have</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:024.75\" id=\"24.8\" class=\"lt\" onclick=\"jumptoTime(24, this.id)\"> your</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:024.91\" id=\"25.0\" class=\"lt\" onclick=\"jumptoTime(24, this.id)\"> home</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:025.17\" id=\"25.2\" class=\"lt\" onclick=\"jumptoTime(25, this.id)\"> or</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:025.31\" id=\"25.4\" class=\"lt\" onclick=\"jumptoTime(25, this.id)\"> office</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:025.73\" id=\"25.8\" class=\"lt\" onclick=\"jumptoTime(25, this.id)\"> number</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:026.05\" id=\"26.0\" class=\"lt\" onclick=\"jumptoTime(26, this.id)\"> area</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:026.33\" id=\"26.4\" class=\"lt\" onclick=\"jumptoTime(26, this.id)\"> code</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:026.71\" id=\"26.8\" class=\"lt\" onclick=\"jumptoTime(26, this.id)\"> first.</a><!--\n",
|
|||
|
"\t\t\t\t--></p>\n",
|
|||
|
"</div>\n",
|
|||
|
"<div class=\"e\" style=\"background-color: #e1ffc7\">\n",
|
|||
|
"<p style=\"margin:0;padding: 5px 10px 10px 10px;word-wrap:normal;white-space:normal;\">\n",
|
|||
|
"<span style=\"color:darkgreen;font-weight: bold;\">Customer</span><br>\n",
|
|||
|
"\t\t\t\t<a href=\"#00:00:027.25\" id=\"27.2\" class=\"lt\" onclick=\"jumptoTime(27, this.id)\"> Aircode</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:027.91\" id=\"28.0\" class=\"lt\" onclick=\"jumptoTime(27, this.id)\"> 409,</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:029.33\" id=\"29.4\" class=\"lt\" onclick=\"jumptoTime(29, this.id)\"> then</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:029.73\" id=\"29.8\" class=\"lt\" onclick=\"jumptoTime(29, this.id)\"> 5</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:030.05\" id=\"30.0\" class=\"lt\" onclick=\"jumptoTime(30, this.id)\">-866</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:031.59\" id=\"31.6\" class=\"lt\" onclick=\"jumptoTime(31, this.id)\">-5088.</a><!--\n",
|
|||
|
"\t\t\t\t--></p>\n",
|
|||
|
"</div>\n",
|
|||
|
"<div class=\"e\" style=\"background-color: white\">\n",
|
|||
|
"<p style=\"margin:0;padding: 5px 10px 10px 10px;word-wrap:normal;white-space:normal;\">\n",
|
|||
|
"<span style=\"color:darkorange;font-weight: bold;\">Call Center</span><br>\n",
|
|||
|
"\t\t\t\t<a href=\"#00:00:035.23\" id=\"35.2\" class=\"lt\" onclick=\"jumptoTime(35, this.id)\"> That's</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:035.87\" id=\"35.8\" class=\"lt\" onclick=\"jumptoTime(35, this.id)\"> 409</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:035.71\" id=\"35.8\" class=\"lt\" onclick=\"jumptoTime(35, this.id)\">-866</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:036.51\" id=\"36.6\" class=\"lt\" onclick=\"jumptoTime(36, this.id)\">-5088.</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:038.37\" id=\"38.4\" class=\"lt\" onclick=\"jumptoTime(38, this.id)\"> Do</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:038.45\" id=\"38.4\" class=\"lt\" onclick=\"jumptoTime(38, this.id)\"> you</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:038.53\" id=\"38.6\" class=\"lt\" onclick=\"jumptoTime(38, this.id)\"> have</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:038.69\" id=\"38.6\" class=\"lt\" onclick=\"jumptoTime(38, this.id)\"> a</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:038.83\" id=\"38.8\" class=\"lt\" onclick=\"jumptoTime(38, this.id)\"> fax</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:039.17\" id=\"39.2\" class=\"lt\" onclick=\"jumptoTime(39, this.id)\"> number</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:039.49\" id=\"39.4\" class=\"lt\" onclick=\"jumptoTime(39, this.id)\"> or</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:039.73\" id=\"39.8\" class=\"lt\" onclick=\"jumptoTime(39, this.id)\"> email</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:040.03\" id=\"40.0\" class=\"lt\" onclick=\"jumptoTime(40, this.id)\"> address?</a><!--\n",
|
|||
|
"\t\t\t\t--></p>\n",
|
|||
|
"</div>\n",
|
|||
|
"<div class=\"e\" style=\"background-color: #e1ffc7\">\n",
|
|||
|
"<p style=\"margin:0;padding: 5px 10px 10px 10px;word-wrap:normal;white-space:normal;\">\n",
|
|||
|
"<span style=\"color:darkgreen;font-weight: bold;\">Customer</span><br>\n",
|
|||
|
"\t\t\t\t<a href=\"#00:00:041.14\" id=\"41.2\" class=\"lt\" onclick=\"jumptoTime(41, this.id)\"> My</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:041.34\" id=\"41.4\" class=\"lt\" onclick=\"jumptoTime(41, this.id)\"> email</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:041.62\" id=\"41.6\" class=\"lt\" onclick=\"jumptoTime(41, this.id)\"> is</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:041.94\" id=\"42.0\" class=\"lt\" onclick=\"jumptoTime(41, this.id)\"> randall</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:042.56\" id=\"42.6\" class=\"lt\" onclick=\"jumptoTime(42, this.id)\">.thomas</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:044.00\" id=\"44.0\" class=\"lt\" onclick=\"jumptoTime(44, this.id)\"> at</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:044.96\" id=\"45.0\" class=\"lt\" onclick=\"jumptoTime(44, this.id)\"> gmail</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:045.50\" id=\"45.6\" class=\"lt\" onclick=\"jumptoTime(45, this.id)\">.com</a><!--\n",
|
|||
|
"\t\t\t\t--></p>\n",
|
|||
|
"</div>\n",
|
|||
|
"<div class=\"e\" style=\"background-color: white\">\n",
|
|||
|
"<p style=\"margin:0;padding: 5px 10px 10px 10px;word-wrap:normal;white-space:normal;\">\n",
|
|||
|
"<span style=\"color:darkorange;font-weight: bold;\">Call Center</span><br>\n",
|
|||
|
"\t\t\t\t<a href=\"#00:00:047.41\" id=\"47.4\" class=\"lt\" onclick=\"jumptoTime(47, this.id)\"> Randall</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:048.13\" id=\"48.2\" class=\"lt\" onclick=\"jumptoTime(48, this.id)\">.Thomas</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:048.53\" id=\"48.6\" class=\"lt\" onclick=\"jumptoTime(48, this.id)\"> at</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:048.85\" id=\"48.8\" class=\"lt\" onclick=\"jumptoTime(48, this.id)\"> gmail</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:049.30\" id=\"49.2\" class=\"lt\" onclick=\"jumptoTime(49, this.id)\">.com</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:050.05\" id=\"50.0\" class=\"lt\" onclick=\"jumptoTime(50, this.id)\"> may</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:050.27\" id=\"50.2\" class=\"lt\" onclick=\"jumptoTime(50, this.id)\"> have</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:050.53\" id=\"50.6\" class=\"lt\" onclick=\"jumptoTime(50, this.id)\"> your</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:050.70\" id=\"50.6\" class=\"lt\" onclick=\"jumptoTime(50, this.id)\"> shipping</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:051.03\" id=\"51.0\" class=\"lt\" onclick=\"jumptoTime(51, this.id)\"> address</a><!--\n",
|
|||
|
"\t\t\t\t--></p>\n",
|
|||
|
"</div>\n",
|
|||
|
"<div class=\"e\" style=\"background-color: #e1ffc7\">\n",
|
|||
|
"<p style=\"margin:0;padding: 5px 10px 10px 10px;word-wrap:normal;white-space:normal;\">\n",
|
|||
|
"<span style=\"color:darkgreen;font-weight: bold;\">Customer</span><br>\n",
|
|||
|
"\t\t\t\t<a href=\"#00:00:051.92\" id=\"52.0\" class=\"lt\" onclick=\"jumptoTime(51, this.id)\"> 6800</a><!--\n",
|
|||
|
"\t\t\t\t--></p>\n",
|
|||
|
"</div>\n",
|
|||
|
"<div class=\"e\" style=\"background-color: white\">\n",
|
|||
|
"<p style=\"margin:0;padding: 5px 10px 10px 10px;word-wrap:normal;white-space:normal;\">\n",
|
|||
|
"<span style=\"color:darkorange;font-weight: bold;\">Call Center</span><br>\n",
|
|||
|
"\t\t\t\t<a href=\"#00:00:053.24\" id=\"53.2\" class=\"lt\" onclick=\"jumptoTime(53, this.id)\"> Okay.</a><!--\n",
|
|||
|
"\t\t\t\t--></p>\n",
|
|||
|
"</div>\n",
|
|||
|
"<div class=\"e\" style=\"background-color: #e1ffc7\">\n",
|
|||
|
"<p style=\"margin:0;padding: 5px 10px 10px 10px;word-wrap:normal;white-space:normal;\">\n",
|
|||
|
"<span style=\"color:darkgreen;font-weight: bold;\">Customer</span><br>\n",
|
|||
|
"\t\t\t\t<a href=\"#00:00:054.32\" id=\"54.4\" class=\"lt\" onclick=\"jumptoTime(54, this.id)\"> Badass</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:054.76\" id=\"54.8\" class=\"lt\" onclick=\"jumptoTime(54, this.id)\"> Avenue,</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:056.20\" id=\"56.2\" class=\"lt\" onclick=\"jumptoTime(56, this.id)\"> Beaumont,</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:057.00\" id=\"57.0\" class=\"lt\" onclick=\"jumptoTime(57, this.id)\"> Texas.</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:058.20\" id=\"58.2\" class=\"lt\" onclick=\"jumptoTime(58, this.id)\"> Zip</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:058.42\" id=\"58.4\" class=\"lt\" onclick=\"jumptoTime(58, this.id)\"> code</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:058.68\" id=\"58.6\" class=\"lt\" onclick=\"jumptoTime(58, this.id)\"> is</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:00:058.94\" id=\"59.0\" class=\"lt\" onclick=\"jumptoTime(58, this.id)\"> 77706.</a><!--\n",
|
|||
|
"\t\t\t\t--></p>\n",
|
|||
|
"</div>\n",
|
|||
|
"<div class=\"e\" style=\"background-color: white\">\n",
|
|||
|
"<p style=\"margin:0;padding: 5px 10px 10px 10px;word-wrap:normal;white-space:normal;\">\n",
|
|||
|
"<span style=\"color:darkorange;font-weight: bold;\">Call Center</span><br>\n",
|
|||
|
"\t\t\t\t<a href=\"#00:01:001.51\" id=\"61.6\" class=\"lt\" onclick=\"jumptoTime(61, this.id)\"> Gladys</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:002.05\" id=\"62.0\" class=\"lt\" onclick=\"jumptoTime(62, this.id)\"> Avenue,</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:002.67\" id=\"62.6\" class=\"lt\" onclick=\"jumptoTime(62, this.id)\"> Beaumont,</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:003.35\" id=\"63.4\" class=\"lt\" onclick=\"jumptoTime(63, this.id)\"> Texas,</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:003.99\" id=\"64.0\" class=\"lt\" onclick=\"jumptoTime(63, this.id)\"> zip</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:004.19\" id=\"64.2\" class=\"lt\" onclick=\"jumptoTime(64, this.id)\"> code</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:004.47\" id=\"64.4\" class=\"lt\" onclick=\"jumptoTime(64, this.id)\"> 77706.</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:006.75\" id=\"66.8\" class=\"lt\" onclick=\"jumptoTime(66, this.id)\"> Thank</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:007.05\" id=\"67.0\" class=\"lt\" onclick=\"jumptoTime(67, this.id)\"> you</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:007.17\" id=\"67.2\" class=\"lt\" onclick=\"jumptoTime(67, this.id)\"> for</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:007.27\" id=\"67.2\" class=\"lt\" onclick=\"jumptoTime(67, this.id)\"> the</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:007.41\" id=\"67.4\" class=\"lt\" onclick=\"jumptoTime(67, this.id)\"> information.</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:008.47\" id=\"68.4\" class=\"lt\" onclick=\"jumptoTime(68, this.id)\"> What</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:008.61\" id=\"68.6\" class=\"lt\" onclick=\"jumptoTime(68, this.id)\"> products</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:009.03\" id=\"69.0\" class=\"lt\" onclick=\"jumptoTime(69, this.id)\"> were</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:009.17\" id=\"69.2\" class=\"lt\" onclick=\"jumptoTime(69, this.id)\"> you</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:009.27\" id=\"69.2\" class=\"lt\" onclick=\"jumptoTime(69, this.id)\"> interested</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:009.65\" id=\"69.6\" class=\"lt\" onclick=\"jumptoTime(69, this.id)\"> in</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:009.93\" id=\"70.0\" class=\"lt\" onclick=\"jumptoTime(69, this.id)\"> purchasing?</a><!--\n",
|
|||
|
"\t\t\t\t--></p>\n",
|
|||
|
"</div>\n",
|
|||
|
"<div class=\"e\" style=\"background-color: #e1ffc7\">\n",
|
|||
|
"<p style=\"margin:0;padding: 5px 10px 10px 10px;word-wrap:normal;white-space:normal;\">\n",
|
|||
|
"<span style=\"color:darkgreen;font-weight: bold;\">Customer</span><br>\n",
|
|||
|
"\t\t\t\t<a href=\"#00:01:011.16\" id=\"71.2\" class=\"lt\" onclick=\"jumptoTime(71, this.id)\"> Red</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:011.42\" id=\"71.4\" class=\"lt\" onclick=\"jumptoTime(71, this.id)\"> roses,</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:012.10\" id=\"72.2\" class=\"lt\" onclick=\"jumptoTime(72, this.id)\"> probably</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:012.42\" id=\"72.4\" class=\"lt\" onclick=\"jumptoTime(72, this.id)\"> a</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:012.58\" id=\"72.6\" class=\"lt\" onclick=\"jumptoTime(72, this.id)\"> dozen.</a><!--\n",
|
|||
|
"\t\t\t\t--></p>\n",
|
|||
|
"</div>\n",
|
|||
|
"<div class=\"e\" style=\"background-color: white\">\n",
|
|||
|
"<p style=\"margin:0;padding: 5px 10px 10px 10px;word-wrap:normal;white-space:normal;\">\n",
|
|||
|
"<span style=\"color:darkorange;font-weight: bold;\">Call Center</span><br>\n",
|
|||
|
"\t\t\t\t<a href=\"#00:01:013.96\" id=\"74.0\" class=\"lt\" onclick=\"jumptoTime(73, this.id)\"> One</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:014.20\" id=\"74.2\" class=\"lt\" onclick=\"jumptoTime(74, this.id)\"> dozen</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:014.52\" id=\"74.6\" class=\"lt\" onclick=\"jumptoTime(74, this.id)\"> of</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:014.72\" id=\"74.8\" class=\"lt\" onclick=\"jumptoTime(74, this.id)\"> red</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:014.90\" id=\"75.0\" class=\"lt\" onclick=\"jumptoTime(74, this.id)\"> roses,</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:015.46\" id=\"75.4\" class=\"lt\" onclick=\"jumptoTime(75, this.id)\"> do</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:015.52\" id=\"75.6\" class=\"lt\" onclick=\"jumptoTime(75, this.id)\"> you</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:015.64\" id=\"75.6\" class=\"lt\" onclick=\"jumptoTime(75, this.id)\"> want</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:015.84\" id=\"75.8\" class=\"lt\" onclick=\"jumptoTime(75, this.id)\"> long</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:016.14\" id=\"76.2\" class=\"lt\" onclick=\"jumptoTime(76, this.id)\"> stems?</a><!--\n",
|
|||
|
"\t\t\t\t--></p>\n",
|
|||
|
"</div>\n",
|
|||
|
"<div class=\"e\" style=\"background-color: #e1ffc7\">\n",
|
|||
|
"<p style=\"margin:0;padding: 5px 10px 10px 10px;word-wrap:normal;white-space:normal;\">\n",
|
|||
|
"<span style=\"color:darkgreen;font-weight: bold;\">Customer</span><br>\n",
|
|||
|
"\t\t\t\t<a href=\"#00:01:016.68\" id=\"76.6\" class=\"lt\" onclick=\"jumptoTime(76, this.id)\"> Sure.</a><!--\n",
|
|||
|
"\t\t\t\t--></p>\n",
|
|||
|
"</div>\n",
|
|||
|
"<div class=\"e\" style=\"background-color: white\">\n",
|
|||
|
"<p style=\"margin:0;padding: 5px 10px 10px 10px;word-wrap:normal;white-space:normal;\">\n",
|
|||
|
"<span style=\"color:darkorange;font-weight: bold;\">Call Center</span><br>\n",
|
|||
|
"\t\t\t\t<a href=\"#00:01:017.67\" id=\"77.6\" class=\"lt\" onclick=\"jumptoTime(77, this.id)\"> Alright,</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:018.33\" id=\"78.4\" class=\"lt\" onclick=\"jumptoTime(78, this.id)\"> Rano,</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:018.94\" id=\"79.0\" class=\"lt\" onclick=\"jumptoTime(78, this.id)\"> let</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:019.16\" id=\"79.2\" class=\"lt\" onclick=\"jumptoTime(79, this.id)\"> me</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:019.25\" id=\"79.2\" class=\"lt\" onclick=\"jumptoTime(79, this.id)\"> process</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:019.61\" id=\"79.6\" class=\"lt\" onclick=\"jumptoTime(79, this.id)\"> the</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:019.80\" id=\"79.8\" class=\"lt\" onclick=\"jumptoTime(79, this.id)\"> order.</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:020.16\" id=\"80.2\" class=\"lt\" onclick=\"jumptoTime(80, this.id)\"> One</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:020.31\" id=\"80.4\" class=\"lt\" onclick=\"jumptoTime(80, this.id)\"> moment,</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:020.75\" id=\"80.8\" class=\"lt\" onclick=\"jumptoTime(80, this.id)\"> please.</a><!--\n",
|
|||
|
"\t\t\t\t--></p>\n",
|
|||
|
"</div>\n",
|
|||
|
"<div class=\"e\" style=\"background-color: #e1ffc7\">\n",
|
|||
|
"<p style=\"margin:0;padding: 5px 10px 10px 10px;word-wrap:normal;white-space:normal;\">\n",
|
|||
|
"<span style=\"color:darkgreen;font-weight: bold;\">Customer</span><br>\n",
|
|||
|
"\t\t\t\t<a href=\"#00:01:022.47\" id=\"82.4\" class=\"lt\" onclick=\"jumptoTime(82, this.id)\"> Okay.</a><!--\n",
|
|||
|
"\t\t\t\t--></p>\n",
|
|||
|
"</div>\n",
|
|||
|
"<div class=\"e\" style=\"background-color: white\">\n",
|
|||
|
"<p style=\"margin:0;padding: 5px 10px 10px 10px;word-wrap:normal;white-space:normal;\">\n",
|
|||
|
"<span style=\"color:darkorange;font-weight: bold;\">Call Center</span><br>\n",
|
|||
|
"\t\t\t\t<a href=\"#00:01:025.10\" id=\"85.2\" class=\"lt\" onclick=\"jumptoTime(85, this.id)\"> Randall,</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:025.62\" id=\"85.6\" class=\"lt\" onclick=\"jumptoTime(85, this.id)\"> you</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:025.64\" id=\"85.6\" class=\"lt\" onclick=\"jumptoTime(85, this.id)\"> are</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:025.76\" id=\"85.8\" class=\"lt\" onclick=\"jumptoTime(85, this.id)\"> ordering</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:026.14\" id=\"86.2\" class=\"lt\" onclick=\"jumptoTime(86, this.id)\"> one</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:026.46\" id=\"86.4\" class=\"lt\" onclick=\"jumptoTime(86, this.id)\"> dozen</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:026.88\" id=\"86.8\" class=\"lt\" onclick=\"jumptoTime(86, this.id)\"> long</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:027.26\" id=\"87.2\" class=\"lt\" onclick=\"jumptoTime(87, this.id)\">-stand</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:027.60\" id=\"87.6\" class=\"lt\" onclick=\"jumptoTime(87, this.id)\"> red</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:027.96\" id=\"88.0\" class=\"lt\" onclick=\"jumptoTime(87, this.id)\"> roses.</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:028.62\" id=\"88.6\" class=\"lt\" onclick=\"jumptoTime(88, this.id)\"> The</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:028.70\" id=\"88.8\" class=\"lt\" onclick=\"jumptoTime(88, this.id)\"> total</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:028.94\" id=\"89.0\" class=\"lt\" onclick=\"jumptoTime(88, this.id)\"> amount</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:029.18\" id=\"89.2\" class=\"lt\" onclick=\"jumptoTime(89, this.id)\"> of</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:029.30\" id=\"89.2\" class=\"lt\" onclick=\"jumptoTime(89, this.id)\"> your</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:029.42\" id=\"89.4\" class=\"lt\" onclick=\"jumptoTime(89, this.id)\"> order</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:029.66\" id=\"89.6\" class=\"lt\" onclick=\"jumptoTime(89, this.id)\"> is</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:029.82\" id=\"89.8\" class=\"lt\" onclick=\"jumptoTime(89, this.id)\"> $40,</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:030.78\" id=\"90.8\" class=\"lt\" onclick=\"jumptoTime(90, this.id)\"> and</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:031.14\" id=\"91.2\" class=\"lt\" onclick=\"jumptoTime(91, this.id)\"> it</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:031.28\" id=\"91.2\" class=\"lt\" onclick=\"jumptoTime(91, this.id)\"> will</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:031.40\" id=\"91.4\" class=\"lt\" onclick=\"jumptoTime(91, this.id)\"> be</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:031.58\" id=\"91.6\" class=\"lt\" onclick=\"jumptoTime(91, this.id)\"> shipped</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:031.86\" id=\"91.8\" class=\"lt\" onclick=\"jumptoTime(91, this.id)\"> to</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:032.10\" id=\"92.0\" class=\"lt\" onclick=\"jumptoTime(92, this.id)\"> your</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:032.26\" id=\"92.2\" class=\"lt\" onclick=\"jumptoTime(92, this.id)\"> address</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:032.58\" id=\"92.6\" class=\"lt\" onclick=\"jumptoTime(92, this.id)\"> within</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:032.86\" id=\"92.8\" class=\"lt\" onclick=\"jumptoTime(92, this.id)\"> 24</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:033.28\" id=\"93.2\" class=\"lt\" onclick=\"jumptoTime(93, this.id)\"> hours.</a><!--\n",
|
|||
|
"\t\t\t\t--></p>\n",
|
|||
|
"</div>\n",
|
|||
|
"<div class=\"e\" style=\"background-color: #e1ffc7\">\n",
|
|||
|
"<p style=\"margin:0;padding: 5px 10px 10px 10px;word-wrap:normal;white-space:normal;\">\n",
|
|||
|
"<span style=\"color:darkgreen;font-weight: bold;\">Customer</span><br>\n",
|
|||
|
"\t\t\t\t<a href=\"#00:01:034.26\" id=\"94.2\" class=\"lt\" onclick=\"jumptoTime(94, this.id)\"> I</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:034.48\" id=\"94.4\" class=\"lt\" onclick=\"jumptoTime(94, this.id)\"> was</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:034.58\" id=\"94.6\" class=\"lt\" onclick=\"jumptoTime(94, this.id)\"> thinking</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:034.84\" id=\"94.8\" class=\"lt\" onclick=\"jumptoTime(94, this.id)\"> of</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:035.00\" id=\"95.0\" class=\"lt\" onclick=\"jumptoTime(95, this.id)\"> delivering</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:035.30\" id=\"95.4\" class=\"lt\" onclick=\"jumptoTime(95, this.id)\"> my</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:035.52\" id=\"95.6\" class=\"lt\" onclick=\"jumptoTime(95, this.id)\"> roses</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:035.84\" id=\"95.8\" class=\"lt\" onclick=\"jumptoTime(95, this.id)\"> again.</a><!--\n",
|
|||
|
"\t\t\t\t--></p>\n",
|
|||
|
"</div>\n",
|
|||
|
"<div class=\"e\" style=\"background-color: white\">\n",
|
|||
|
"<p style=\"margin:0;padding: 5px 10px 10px 10px;word-wrap:normal;white-space:normal;\">\n",
|
|||
|
"<span style=\"color:darkorange;font-weight: bold;\">Call Center</span><br>\n",
|
|||
|
"\t\t\t\t<a href=\"#00:01:036.88\" id=\"96.8\" class=\"lt\" onclick=\"jumptoTime(96, this.id)\"> within</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:037.14\" id=\"97.2\" class=\"lt\" onclick=\"jumptoTime(97, this.id)\"> 24</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:037.60\" id=\"97.6\" class=\"lt\" onclick=\"jumptoTime(97, this.id)\"> hours.</a><!--\n",
|
|||
|
"\t\t\t\t--></p>\n",
|
|||
|
"</div>\n",
|
|||
|
"<div class=\"e\" style=\"background-color: #e1ffc7\">\n",
|
|||
|
"<p style=\"margin:0;padding: 5px 10px 10px 10px;word-wrap:normal;white-space:normal;\">\n",
|
|||
|
"<span style=\"color:darkgreen;font-weight: bold;\">Customer</span><br>\n",
|
|||
|
"\t\t\t\t<a href=\"#00:01:038.78\" id=\"98.8\" class=\"lt\" onclick=\"jumptoTime(98, this.id)\"> Okay,</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:039.14\" id=\"99.2\" class=\"lt\" onclick=\"jumptoTime(99, this.id)\"> no</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:039.22\" id=\"99.2\" class=\"lt\" onclick=\"jumptoTime(99, this.id)\"> problem.</a><!--\n",
|
|||
|
"\t\t\t\t--></p>\n",
|
|||
|
"</div>\n",
|
|||
|
"<div class=\"e\" style=\"background-color: white\">\n",
|
|||
|
"<p style=\"margin:0;padding: 5px 10px 10px 10px;word-wrap:normal;white-space:normal;\">\n",
|
|||
|
"<span style=\"color:darkorange;font-weight: bold;\">Call Center</span><br>\n",
|
|||
|
"\t\t\t\t<a href=\"#00:01:040.20\" id=\"100.2\" class=\"lt\" onclick=\"jumptoTime(100, this.id)\"> Is</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:040.36\" id=\"100.4\" class=\"lt\" onclick=\"jumptoTime(100, this.id)\"> there</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:040.46\" id=\"100.4\" class=\"lt\" onclick=\"jumptoTime(100, this.id)\"> anything</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:040.74\" id=\"100.8\" class=\"lt\" onclick=\"jumptoTime(100, this.id)\"> else</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:041.04\" id=\"101.0\" class=\"lt\" onclick=\"jumptoTime(101, this.id)\"> I</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:041.14\" id=\"101.2\" class=\"lt\" onclick=\"jumptoTime(101, this.id)\"> can</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:041.28\" id=\"101.2\" class=\"lt\" onclick=\"jumptoTime(101, this.id)\"> help</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:041.50\" id=\"101.6\" class=\"lt\" onclick=\"jumptoTime(101, this.id)\"> you</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:041.60\" id=\"101.6\" class=\"lt\" onclick=\"jumptoTime(101, this.id)\"> with?</a><!--\n",
|
|||
|
"\t\t\t\t--></p>\n",
|
|||
|
"</div>\n",
|
|||
|
"<div class=\"e\" style=\"background-color: #e1ffc7\">\n",
|
|||
|
"<p style=\"margin:0;padding: 5px 10px 10px 10px;word-wrap:normal;white-space:normal;\">\n",
|
|||
|
"<span style=\"color:darkgreen;font-weight: bold;\">Customer</span><br>\n",
|
|||
|
"\t\t\t\t<a href=\"#00:01:042.70\" id=\"102.8\" class=\"lt\" onclick=\"jumptoTime(102, this.id)\"> That's</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:042.98\" id=\"103.0\" class=\"lt\" onclick=\"jumptoTime(102, this.id)\"> all</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:043.12\" id=\"103.2\" class=\"lt\" onclick=\"jumptoTime(103, this.id)\"> for</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:043.24\" id=\"103.2\" class=\"lt\" onclick=\"jumptoTime(103, this.id)\"> now,</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:043.56\" id=\"103.6\" class=\"lt\" onclick=\"jumptoTime(103, this.id)\"> thanks.</a><!--\n",
|
|||
|
"\t\t\t\t--></p>\n",
|
|||
|
"</div>\n",
|
|||
|
"<div class=\"e\" style=\"background-color: white\">\n",
|
|||
|
"<p style=\"margin:0;padding: 5px 10px 10px 10px;word-wrap:normal;white-space:normal;\">\n",
|
|||
|
"<span style=\"color:darkorange;font-weight: bold;\">Call Center</span><br>\n",
|
|||
|
"\t\t\t\t<a href=\"#00:01:044.32\" id=\"104.4\" class=\"lt\" onclick=\"jumptoTime(104, this.id)\"> No</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:044.54\" id=\"104.6\" class=\"lt\" onclick=\"jumptoTime(104, this.id)\"> problem,</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:045.02\" id=\"105.0\" class=\"lt\" onclick=\"jumptoTime(105, this.id)\"> Randall.</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:045.42\" id=\"105.4\" class=\"lt\" onclick=\"jumptoTime(105, this.id)\"> Thank</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:045.58\" id=\"105.6\" class=\"lt\" onclick=\"jumptoTime(105, this.id)\"> you</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:045.68\" id=\"105.6\" class=\"lt\" onclick=\"jumptoTime(105, this.id)\"> for</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:045.80\" id=\"105.8\" class=\"lt\" onclick=\"jumptoTime(105, this.id)\"> calling</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:046.06\" id=\"106.0\" class=\"lt\" onclick=\"jumptoTime(106, this.id)\"> Martha's</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:046.58\" id=\"106.6\" class=\"lt\" onclick=\"jumptoTime(106, this.id)\"> Flourish.</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:046.98\" id=\"107.0\" class=\"lt\" onclick=\"jumptoTime(106, this.id)\"> Have</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:047.16\" id=\"107.2\" class=\"lt\" onclick=\"jumptoTime(107, this.id)\"> a</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:047.26\" id=\"107.2\" class=\"lt\" onclick=\"jumptoTime(107, this.id)\"> nice</a><!--\n",
|
|||
|
"\t\t\t\t--><a href=\"#00:01:047.44\" id=\"107.4\" class=\"lt\" onclick=\"jumptoTime(107, this.id)\"> day.</a><!--\n",
|
|||
|
"\t\t\t\t--></p>\n",
|
|||
|
"</div>\n",
|
|||
|
"\t</body>\n",
|
|||
|
"</html>\n",
|
|||
|
"\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"#import webvtt\n",
|
|||
|
"import json\n",
|
|||
|
"from datetime import timedelta\n",
|
|||
|
"\n",
|
|||
|
"def timeStr(t):\n",
|
|||
|
" return '{0:02d}:{1:02d}:{2:06.2f}'.format(round(t // 3600), \n",
|
|||
|
" round(t % 3600 // 60), \n",
|
|||
|
" t % 60)\n",
|
|||
|
"\n",
|
|||
|
"html = list(preS)\n",
|
|||
|
"txt = list(\"\")\n",
|
|||
|
"gidx = -1\n",
|
|||
|
"for g in groups: \n",
|
|||
|
" shift = re.findall('[0-9]+:[0-9]+:[0-9]+\\.[0-9]+', string=g[0])[0]\n",
|
|||
|
" shift = millisec(shift) - spacermilli #the start time in the original video\n",
|
|||
|
" shift=max(shift, 0)\n",
|
|||
|
" \n",
|
|||
|
" gidx += 1\n",
|
|||
|
" \n",
|
|||
|
" captions = json.load(open(str(gidx) + '.json'))['segments']\n",
|
|||
|
"\n",
|
|||
|
" if captions:\n",
|
|||
|
" speaker = g[0].split()[-1]\n",
|
|||
|
" boxclr = def_boxclr\n",
|
|||
|
" spkrclr = def_spkrclr\n",
|
|||
|
" if speaker in speakers:\n",
|
|||
|
" speaker, boxclr, spkrclr = speakers[speaker] \n",
|
|||
|
" \n",
|
|||
|
" html.append(f'<div class=\"e\" style=\"background-color: {boxclr}\">\\n');\n",
|
|||
|
" html.append('<p style=\"margin:0;padding: 5px 10px 10px 10px;word-wrap:normal;white-space:normal;\">\\n')\n",
|
|||
|
" html.append(f'<span style=\"color:{spkrclr};font-weight: bold;\">{speaker}</span><br>\\n\\t\\t\\t\\t')\n",
|
|||
|
" \n",
|
|||
|
" for c in captions:\n",
|
|||
|
" start = shift + c['start'] * 1000.0 \n",
|
|||
|
" start = start / 1000.0 #time resolution ot youtube is Second. \n",
|
|||
|
" end = (shift + c['end'] * 1000.0) / 1000.0 \n",
|
|||
|
" txt.append(f'[{timeStr(start)} --> {timeStr(end)}] [{speaker}] {c[\"text\"]}\\n')\n",
|
|||
|
"\n",
|
|||
|
" for i, w in enumerate(c['words']):\n",
|
|||
|
" if w == \"\":\n",
|
|||
|
" continue\n",
|
|||
|
" start = (shift + w['start']*1000.0) / 1000.0 \n",
|
|||
|
" #end = (shift + w['end']) / 1000.0 #time resolution ot youtube is Second. \n",
|
|||
|
" html.append(f'<a href=\"#{timeStr(start)}\" id=\"{\"{:.1f}\".format(round(start*5)/5)}\" class=\"lt\" onclick=\"jumptoTime({int(start)}, this.id)\">{w[\"word\"]}</a><!--\\n\\t\\t\\t\\t-->')\n",
|
|||
|
" #html.append('\\n') \n",
|
|||
|
" html.append('</p>\\n')\n",
|
|||
|
" html.append(f'</div>\\n')\n",
|
|||
|
"\n",
|
|||
|
"html.append(postS)\n",
|
|||
|
"\n",
|
|||
|
"\n",
|
|||
|
"with open(f\"capspeaker.txt\", \"w\", encoding='utf-8') as file:\n",
|
|||
|
" s = \"\".join(txt)\n",
|
|||
|
" file.write(s)\n",
|
|||
|
" print('captions saved to capspeaker.txt:')\n",
|
|||
|
" print(s+'\\n')\n",
|
|||
|
"\n",
|
|||
|
"with open(f\"capspeaker.html\", \"w\", encoding='utf-8') as file: #TODO: proper html embed tag when video/audio from file\n",
|
|||
|
" s = \"\".join(html)\n",
|
|||
|
" file.write(s)\n",
|
|||
|
" print('captions saved to capspeaker.html:')\n",
|
|||
|
" print(s+'\\n')"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"metadata": {
|
|||
|
"accelerator": "GPU",
|
|||
|
"colab": {
|
|||
|
"machine_shape": "hm",
|
|||
|
"provenance": []
|
|||
|
},
|
|||
|
"gpuClass": "standard",
|
|||
|
"kernelspec": {
|
|||
|
"display_name": "Python 3 (ipykernel)",
|
|||
|
"language": "python",
|
|||
|
"name": "python3"
|
|||
|
},
|
|||
|
"language_info": {
|
|||
|
"codemirror_mode": {
|
|||
|
"name": "ipython",
|
|||
|
"version": 3
|
|||
|
},
|
|||
|
"file_extension": ".py",
|
|||
|
"mimetype": "text/x-python",
|
|||
|
"name": "python",
|
|||
|
"nbconvert_exporter": "python",
|
|||
|
"pygments_lexer": "ipython3",
|
|||
|
"version": "3.11.3"
|
|||
|
},
|
|||
|
"widgets": {
|
|||
|
"application/vnd.jupyter.widget-state+json": {
|
|||
|
"0173b0fc70304a3aa5bdc2e390b8eab7": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "DescriptionStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "DescriptionStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"description_width": ""
|
|||
|
}
|
|||
|
},
|
|||
|
"01c78ca91da0472db2c56442eb6bf3ac": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "DescriptionStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "DescriptionStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"description_width": ""
|
|||
|
}
|
|||
|
},
|
|||
|
"030e3e6181f74fcf86f15783aa846faf": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "DescriptionStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "DescriptionStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"description_width": ""
|
|||
|
}
|
|||
|
},
|
|||
|
"03e1daaf6086423d9017a4af01b87e3c": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "HTMLModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HTMLModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HTMLView",
|
|||
|
"description": "",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_cbc2e2816b514899aa00dab172ef9775",
|
|||
|
"placeholder": "",
|
|||
|
"style": "IPY_MODEL_fb989ccef0454171b0affbb3b0ed1519",
|
|||
|
"value": " 1.92k/? [00:00<00:00, 131kB/s]"
|
|||
|
}
|
|||
|
},
|
|||
|
"072bc12d63904de9a2f09539c0b0a4b4": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "HTMLModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HTMLModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HTMLView",
|
|||
|
"description": "",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_7f0f982b1d514596b35a393c5ebd1544",
|
|||
|
"placeholder": "",
|
|||
|
"style": "IPY_MODEL_030e3e6181f74fcf86f15783aa846faf",
|
|||
|
"value": " 500/500 [00:00<00:00, 25.4kB/s]"
|
|||
|
}
|
|||
|
},
|
|||
|
"073e5f22a1b745eabd117e5432196d2a": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_module_version": "1.2.0",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"0aeec2aada234621ba269e27bf0087e3": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "FloatProgressModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "FloatProgressModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "ProgressView",
|
|||
|
"bar_style": "success",
|
|||
|
"description": "",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_96e3eda032cf4175bd5bde95690786e7",
|
|||
|
"max": 1,
|
|||
|
"min": 0,
|
|||
|
"orientation": "horizontal",
|
|||
|
"style": "IPY_MODEL_c973e4a3d73d46d7ab5fb67661f05505",
|
|||
|
"value": 1
|
|||
|
}
|
|||
|
},
|
|||
|
"0cae3e14e6104afdac42f102eeacd73b": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "FloatProgressModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "FloatProgressModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "ProgressView",
|
|||
|
"bar_style": "success",
|
|||
|
"description": "",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_a5b90b47178e4a779dfceae1f1405495",
|
|||
|
"max": 1,
|
|||
|
"min": 0,
|
|||
|
"orientation": "horizontal",
|
|||
|
"style": "IPY_MODEL_25bf76052a3e41bcafc10281f771f044",
|
|||
|
"value": 1
|
|||
|
}
|
|||
|
},
|
|||
|
"0cfa4d6c99be4dc6b86f9b46ff6c1e78": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "HTMLModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HTMLModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HTMLView",
|
|||
|
"description": "",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_898d0fb80047486dba6e84719d5e2a37",
|
|||
|
"placeholder": "",
|
|||
|
"style": "IPY_MODEL_a893a1d6eb9d4c988bf0cf92b9eeef96",
|
|||
|
"value": " 5.53M/5.53M [00:00<00:00, 35.8MB/s]"
|
|||
|
}
|
|||
|
},
|
|||
|
"0e6f62263f9145058d14d64984815f2d": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "DescriptionStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "DescriptionStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"description_width": ""
|
|||
|
}
|
|||
|
},
|
|||
|
"104acfe0f696434c96ba08ce69d01da1": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "FloatProgressModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "FloatProgressModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "ProgressView",
|
|||
|
"bar_style": "success",
|
|||
|
"description": "",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_dd0264ee53db4169a35e0f2da43dbb8e",
|
|||
|
"max": 1921,
|
|||
|
"min": 0,
|
|||
|
"orientation": "horizontal",
|
|||
|
"style": "IPY_MODEL_3145f62cdc374b21adedea938ebc859f",
|
|||
|
"value": 1921
|
|||
|
}
|
|||
|
},
|
|||
|
"1208590c08134023838e8e886a611a77": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "DescriptionStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "DescriptionStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"description_width": ""
|
|||
|
}
|
|||
|
},
|
|||
|
"12f9050dbae742e3bc3f43cc75bc52bc": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_module_version": "1.2.0",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"1c5d0d0290a446b0950e95a8917faadc": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "FloatProgressModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "FloatProgressModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "ProgressView",
|
|||
|
"bar_style": "success",
|
|||
|
"description": "",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_8b0177713bb748828d462287e619ca96",
|
|||
|
"max": 500,
|
|||
|
"min": 0,
|
|||
|
"orientation": "horizontal",
|
|||
|
"style": "IPY_MODEL_2e61cb0368604391a1c91a3d672ae29f",
|
|||
|
"value": 500
|
|||
|
}
|
|||
|
},
|
|||
|
"25bf76052a3e41bcafc10281f771f044": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "ProgressStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "ProgressStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"bar_color": null,
|
|||
|
"description_width": ""
|
|||
|
}
|
|||
|
},
|
|||
|
"2866460dbec047ba8f4c5e81cc292711": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_module_version": "1.2.0",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"2e61cb0368604391a1c91a3d672ae29f": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "ProgressStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "ProgressStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"bar_color": null,
|
|||
|
"description_width": ""
|
|||
|
}
|
|||
|
},
|
|||
|
"3145f62cdc374b21adedea938ebc859f": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "ProgressStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "ProgressStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"bar_color": null,
|
|||
|
"description_width": ""
|
|||
|
}
|
|||
|
},
|
|||
|
"34d8575762114e7d9d7bdf8c066593a5": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_module_version": "1.2.0",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"35ea4cf25ff24b69aebe509a85c34423": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_module_version": "1.2.0",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"3635de8b7655414d8dbedefdbd48fb7d": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "HTMLModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HTMLModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HTMLView",
|
|||
|
"description": "",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_95bae617fdbd4c908bec622c8e74df8e",
|
|||
|
"placeholder": "",
|
|||
|
"style": "IPY_MODEL_363a8f886ab84887a1d71609cf7e9413",
|
|||
|
"value": " 17.7M/17.7M [00:01<00:00, 16.8MB/s]"
|
|||
|
}
|
|||
|
},
|
|||
|
"363a8f886ab84887a1d71609cf7e9413": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "DescriptionStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "DescriptionStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"description_width": ""
|
|||
|
}
|
|||
|
},
|
|||
|
"3ad4b30c0c6640fc921b782ff2a84545": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "HBoxModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HBoxModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HBoxView",
|
|||
|
"box_style": "",
|
|||
|
"children": [
|
|||
|
"IPY_MODEL_6873d9df2958468aa924b7c3b0b130bd",
|
|||
|
"IPY_MODEL_b9cf8d797795426aa7923c36f29b7299",
|
|||
|
"IPY_MODEL_3635de8b7655414d8dbedefdbd48fb7d"
|
|||
|
],
|
|||
|
"layout": "IPY_MODEL_54de617a9dbc468a8f833aaa06464960"
|
|||
|
}
|
|||
|
},
|
|||
|
"45d07b61c0124913869a6fb15c51a31b": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "HTMLModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HTMLModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HTMLView",
|
|||
|
"description": "",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_073e5f22a1b745eabd117e5432196d2a",
|
|||
|
"placeholder": "",
|
|||
|
"style": "IPY_MODEL_48e4ccd21dfd4205a849cbed8089d00f",
|
|||
|
"value": " 83.3M/83.3M [00:01<00:00, 89.6MB/s]"
|
|||
|
}
|
|||
|
},
|
|||
|
"48e4ccd21dfd4205a849cbed8089d00f": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "DescriptionStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "DescriptionStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"description_width": ""
|
|||
|
}
|
|||
|
},
|
|||
|
"4a92ebfa58524bf39e4540499e78d147": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "HBoxModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HBoxModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HBoxView",
|
|||
|
"box_style": "",
|
|||
|
"children": [
|
|||
|
"IPY_MODEL_5518f43264274fa3889d6203c121f371",
|
|||
|
"IPY_MODEL_b5b5094042f0409cb8ad74268ba6aae0",
|
|||
|
"IPY_MODEL_0cfa4d6c99be4dc6b86f9b46ff6c1e78"
|
|||
|
],
|
|||
|
"layout": "IPY_MODEL_be14af4415784c13872fcae41f6c6d47"
|
|||
|
}
|
|||
|
},
|
|||
|
"52097a4204e642d3ad7f6e50fd4546e7": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_module_version": "1.2.0",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"546ed9780904486493b0205e3499d369": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_module_version": "1.2.0",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"54de617a9dbc468a8f833aaa06464960": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_module_version": "1.2.0",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"5518f43264274fa3889d6203c121f371": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "HTMLModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HTMLModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HTMLView",
|
|||
|
"description": "",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_35ea4cf25ff24b69aebe509a85c34423",
|
|||
|
"placeholder": "",
|
|||
|
"style": "IPY_MODEL_9dab404555984569bd4f32eb39f9b4c0",
|
|||
|
"value": "Downloading classifier.ckpt: 100%"
|
|||
|
}
|
|||
|
},
|
|||
|
"5635f5fc59164e4aa69e2f4dd7301ba0": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_module_version": "1.2.0",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"5c13b264a4e942f29719ee21fa9e013f": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "HBoxModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HBoxModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HBoxView",
|
|||
|
"box_style": "",
|
|||
|
"children": [
|
|||
|
"IPY_MODEL_648bc98d57fe4eac96febe4c7f995ab4",
|
|||
|
"IPY_MODEL_0cae3e14e6104afdac42f102eeacd73b",
|
|||
|
"IPY_MODEL_6c92726f8db14578922d1e0025f81703"
|
|||
|
],
|
|||
|
"layout": "IPY_MODEL_c095387effea469bb2c353ec7c669dad"
|
|||
|
}
|
|||
|
},
|
|||
|
"60ef10f549044fafad82d0e592a1489b": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "HTMLModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HTMLModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HTMLView",
|
|||
|
"description": "",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_98850786a145436b9bdfeff1bf2e156c",
|
|||
|
"placeholder": "",
|
|||
|
"style": "IPY_MODEL_dd231abf4cf94d208d886feb42a4b952",
|
|||
|
"value": "Downloading (…)/2022.07/config.yaml: 100%"
|
|||
|
}
|
|||
|
},
|
|||
|
"61ffadd175334ffa8cb4c958b8480133": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "ProgressStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "ProgressStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"bar_color": null,
|
|||
|
"description_width": ""
|
|||
|
}
|
|||
|
},
|
|||
|
"648bc98d57fe4eac96febe4c7f995ab4": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "HTMLModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HTMLModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HTMLView",
|
|||
|
"description": "",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_70ed33d0fca842fd99ab6b591d9c7163",
|
|||
|
"placeholder": "",
|
|||
|
"style": "IPY_MODEL_01c78ca91da0472db2c56442eb6bf3ac",
|
|||
|
"value": "Downloading (…)in/label_encoder.txt: "
|
|||
|
}
|
|||
|
},
|
|||
|
"675a4e80564044bcae99c2538f63a99b": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "ProgressStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "ProgressStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"bar_color": null,
|
|||
|
"description_width": ""
|
|||
|
}
|
|||
|
},
|
|||
|
"6873d9df2958468aa924b7c3b0b130bd": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "HTMLModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HTMLModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HTMLView",
|
|||
|
"description": "",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_12f9050dbae742e3bc3f43cc75bc52bc",
|
|||
|
"placeholder": "",
|
|||
|
"style": "IPY_MODEL_a69987750939419b82d4d7e4f6635ca8",
|
|||
|
"value": "Downloading pytorch_model.bin: 100%"
|
|||
|
}
|
|||
|
},
|
|||
|
"6b38b3c3c69d445684d7d98ce68358eb": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_module_version": "1.2.0",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"6c92726f8db14578922d1e0025f81703": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "HTMLModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HTMLModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HTMLView",
|
|||
|
"description": "",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_52097a4204e642d3ad7f6e50fd4546e7",
|
|||
|
"placeholder": "",
|
|||
|
"style": "IPY_MODEL_8e4110fefcae44d09a03b3757142ad5d",
|
|||
|
"value": " 129k/? [00:00<00:00, 6.65MB/s]"
|
|||
|
}
|
|||
|
},
|
|||
|
"6da323d419e143ccbf8350845408931a": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "HTMLModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HTMLModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HTMLView",
|
|||
|
"description": "",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_e3accfa88994452b99ca84e02004ad7d",
|
|||
|
"placeholder": "",
|
|||
|
"style": "IPY_MODEL_0e6f62263f9145058d14d64984815f2d",
|
|||
|
"value": " 1.92k/1.92k [00:00<00:00, 128kB/s]"
|
|||
|
}
|
|||
|
},
|
|||
|
"6db043789b9344c1a57d4ffffa84b5d6": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "ProgressStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "ProgressStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"bar_color": null,
|
|||
|
"description_width": ""
|
|||
|
}
|
|||
|
},
|
|||
|
"6fdc6045767f459eb13a71f1c9589c78": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "DescriptionStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "DescriptionStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"description_width": ""
|
|||
|
}
|
|||
|
},
|
|||
|
"70ed33d0fca842fd99ab6b591d9c7163": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_module_version": "1.2.0",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"772c7cc58dda47bb96c206a6c01cd37c": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_module_version": "1.2.0",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"7f0f982b1d514596b35a393c5ebd1544": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_module_version": "1.2.0",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"8124c1ec4cb149aebb8f8134619e50e6": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_module_version": "1.2.0",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"81fb5f28fbd84991aced3b675bda8538": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "HBoxModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HBoxModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HBoxView",
|
|||
|
"box_style": "",
|
|||
|
"children": [
|
|||
|
"IPY_MODEL_cce1d515c3a148998a17136092ef9ace",
|
|||
|
"IPY_MODEL_104acfe0f696434c96ba08ce69d01da1",
|
|||
|
"IPY_MODEL_6da323d419e143ccbf8350845408931a"
|
|||
|
],
|
|||
|
"layout": "IPY_MODEL_b50ea57ac26b4633b1af3dd04d3e2b64"
|
|||
|
}
|
|||
|
},
|
|||
|
"8767a2b17c22493092e68f8f1bf7d8aa": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_module_version": "1.2.0",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"87b4741cc2174372ab2b3b31c45257ee": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "HBoxModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HBoxModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HBoxView",
|
|||
|
"box_style": "",
|
|||
|
"children": [
|
|||
|
"IPY_MODEL_60ef10f549044fafad82d0e592a1489b",
|
|||
|
"IPY_MODEL_e71b7d04a2644c5082c1e823de958b5a",
|
|||
|
"IPY_MODEL_b91fde9cc52b4be5a5a2a9e3050c5d4d"
|
|||
|
],
|
|||
|
"layout": "IPY_MODEL_bf25e28626fc4bbb955d31c48deea204"
|
|||
|
}
|
|||
|
},
|
|||
|
"898d0fb80047486dba6e84719d5e2a37": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_module_version": "1.2.0",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"8b0177713bb748828d462287e619ca96": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_module_version": "1.2.0",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"8e4110fefcae44d09a03b3757142ad5d": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "DescriptionStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "DescriptionStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"description_width": ""
|
|||
|
}
|
|||
|
},
|
|||
|
"949608b13ed84264a75d7a694a2200e5": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "HTMLModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HTMLModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HTMLView",
|
|||
|
"description": "",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_34d8575762114e7d9d7bdf8c066593a5",
|
|||
|
"placeholder": "",
|
|||
|
"style": "IPY_MODEL_6fdc6045767f459eb13a71f1c9589c78",
|
|||
|
"value": "Downloading (…)ain/hyperparams.yaml: "
|
|||
|
}
|
|||
|
},
|
|||
|
"95bae617fdbd4c908bec622c8e74df8e": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_module_version": "1.2.0",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"96e3eda032cf4175bd5bde95690786e7": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_module_version": "1.2.0",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": "20px"
|
|||
|
}
|
|||
|
},
|
|||
|
"98850786a145436b9bdfeff1bf2e156c": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_module_version": "1.2.0",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"9dab404555984569bd4f32eb39f9b4c0": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "DescriptionStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "DescriptionStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"description_width": ""
|
|||
|
}
|
|||
|
},
|
|||
|
"a0a5a49ca89e4e7c8176f51e9174a031": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "FloatProgressModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "FloatProgressModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "ProgressView",
|
|||
|
"bar_style": "success",
|
|||
|
"description": "",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_aa439d0201c24b009c5c5ffc0dc0aa3e",
|
|||
|
"max": 83316686,
|
|||
|
"min": 0,
|
|||
|
"orientation": "horizontal",
|
|||
|
"style": "IPY_MODEL_6db043789b9344c1a57d4ffffa84b5d6",
|
|||
|
"value": 83316686
|
|||
|
}
|
|||
|
},
|
|||
|
"a3568db1b59e482cafa6498dac466987": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "DescriptionStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "DescriptionStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"description_width": ""
|
|||
|
}
|
|||
|
},
|
|||
|
"a5b90b47178e4a779dfceae1f1405495": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_module_version": "1.2.0",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": "20px"
|
|||
|
}
|
|||
|
},
|
|||
|
"a69987750939419b82d4d7e4f6635ca8": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "DescriptionStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "DescriptionStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"description_width": ""
|
|||
|
}
|
|||
|
},
|
|||
|
"a893a1d6eb9d4c988bf0cf92b9eeef96": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "DescriptionStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "DescriptionStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"description_width": ""
|
|||
|
}
|
|||
|
},
|
|||
|
"aa439d0201c24b009c5c5ffc0dc0aa3e": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_module_version": "1.2.0",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"aa94fe5c7b214174914ecf6de596b54d": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_module_version": "1.2.0",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"b00a57bbc2984b25b080cf426fc9d93a": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "HBoxModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HBoxModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HBoxView",
|
|||
|
"box_style": "",
|
|||
|
"children": [
|
|||
|
"IPY_MODEL_fe067ac0f4774e4b95e653861fb29420",
|
|||
|
"IPY_MODEL_a0a5a49ca89e4e7c8176f51e9174a031",
|
|||
|
"IPY_MODEL_45d07b61c0124913869a6fb15c51a31b"
|
|||
|
],
|
|||
|
"layout": "IPY_MODEL_546ed9780904486493b0205e3499d369"
|
|||
|
}
|
|||
|
},
|
|||
|
"b4b04842f22d4334ab4287714b505e62": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_module_version": "1.2.0",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"b50ea57ac26b4633b1af3dd04d3e2b64": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_module_version": "1.2.0",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"b5b5094042f0409cb8ad74268ba6aae0": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "FloatProgressModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "FloatProgressModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "ProgressView",
|
|||
|
"bar_style": "success",
|
|||
|
"description": "",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_8767a2b17c22493092e68f8f1bf7d8aa",
|
|||
|
"max": 5534328,
|
|||
|
"min": 0,
|
|||
|
"orientation": "horizontal",
|
|||
|
"style": "IPY_MODEL_fdfae47e9d564aefb43c0d57b65211cd",
|
|||
|
"value": 5534328
|
|||
|
}
|
|||
|
},
|
|||
|
"b91fde9cc52b4be5a5a2a9e3050c5d4d": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "HTMLModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HTMLModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HTMLView",
|
|||
|
"description": "",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_5635f5fc59164e4aa69e2f4dd7301ba0",
|
|||
|
"placeholder": "",
|
|||
|
"style": "IPY_MODEL_0173b0fc70304a3aa5bdc2e390b8eab7",
|
|||
|
"value": " 318/318 [00:00<00:00, 21.6kB/s]"
|
|||
|
}
|
|||
|
},
|
|||
|
"b9cf8d797795426aa7923c36f29b7299": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "FloatProgressModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "FloatProgressModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "ProgressView",
|
|||
|
"bar_style": "success",
|
|||
|
"description": "",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_8124c1ec4cb149aebb8f8134619e50e6",
|
|||
|
"max": 17719103,
|
|||
|
"min": 0,
|
|||
|
"orientation": "horizontal",
|
|||
|
"style": "IPY_MODEL_61ffadd175334ffa8cb4c958b8480133",
|
|||
|
"value": 17719103
|
|||
|
}
|
|||
|
},
|
|||
|
"bd906e3ecf9b416cb25ff8d4e3e1a4ce": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_module_version": "1.2.0",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"be14af4415784c13872fcae41f6c6d47": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_module_version": "1.2.0",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"bf25e28626fc4bbb955d31c48deea204": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_module_version": "1.2.0",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"c095387effea469bb2c353ec7c669dad": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_module_version": "1.2.0",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"c973e4a3d73d46d7ab5fb67661f05505": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "ProgressStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "ProgressStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"bar_color": null,
|
|||
|
"description_width": ""
|
|||
|
}
|
|||
|
},
|
|||
|
"cbc2e2816b514899aa00dab172ef9775": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_module_version": "1.2.0",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"cce1d515c3a148998a17136092ef9ace": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "HTMLModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HTMLModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HTMLView",
|
|||
|
"description": "",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_aa94fe5c7b214174914ecf6de596b54d",
|
|||
|
"placeholder": "",
|
|||
|
"style": "IPY_MODEL_a3568db1b59e482cafa6498dac466987",
|
|||
|
"value": "Downloading (…)an_var_norm_emb.ckpt: 100%"
|
|||
|
}
|
|||
|
},
|
|||
|
"ceb9cabad998432ebd4541a41ad69e76": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "HBoxModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HBoxModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HBoxView",
|
|||
|
"box_style": "",
|
|||
|
"children": [
|
|||
|
"IPY_MODEL_eeb45fe8a520470b89526c96f86e942a",
|
|||
|
"IPY_MODEL_1c5d0d0290a446b0950e95a8917faadc",
|
|||
|
"IPY_MODEL_072bc12d63904de9a2f09539c0b0a4b4"
|
|||
|
],
|
|||
|
"layout": "IPY_MODEL_b4b04842f22d4334ab4287714b505e62"
|
|||
|
}
|
|||
|
},
|
|||
|
"dd0264ee53db4169a35e0f2da43dbb8e": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_module_version": "1.2.0",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"dd231abf4cf94d208d886feb42a4b952": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "DescriptionStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "DescriptionStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"description_width": ""
|
|||
|
}
|
|||
|
},
|
|||
|
"e3accfa88994452b99ca84e02004ad7d": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_module_version": "1.2.0",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"e71b7d04a2644c5082c1e823de958b5a": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "FloatProgressModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "FloatProgressModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "ProgressView",
|
|||
|
"bar_style": "success",
|
|||
|
"description": "",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_772c7cc58dda47bb96c206a6c01cd37c",
|
|||
|
"max": 318,
|
|||
|
"min": 0,
|
|||
|
"orientation": "horizontal",
|
|||
|
"style": "IPY_MODEL_675a4e80564044bcae99c2538f63a99b",
|
|||
|
"value": 318
|
|||
|
}
|
|||
|
},
|
|||
|
"ed483488e6e342a7a6291ee50bd3fcb4": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "HBoxModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HBoxModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HBoxView",
|
|||
|
"box_style": "",
|
|||
|
"children": [
|
|||
|
"IPY_MODEL_949608b13ed84264a75d7a694a2200e5",
|
|||
|
"IPY_MODEL_0aeec2aada234621ba269e27bf0087e3",
|
|||
|
"IPY_MODEL_03e1daaf6086423d9017a4af01b87e3c"
|
|||
|
],
|
|||
|
"layout": "IPY_MODEL_6b38b3c3c69d445684d7d98ce68358eb"
|
|||
|
}
|
|||
|
},
|
|||
|
"eeb45fe8a520470b89526c96f86e942a": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "HTMLModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HTMLModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HTMLView",
|
|||
|
"description": "",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_2866460dbec047ba8f4c5e81cc292711",
|
|||
|
"placeholder": "",
|
|||
|
"style": "IPY_MODEL_1208590c08134023838e8e886a611a77",
|
|||
|
"value": "Downloading (…)lve/main/config.yaml: 100%"
|
|||
|
}
|
|||
|
},
|
|||
|
"f5af9e6f7ad64571b095ec99f0d2359e": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "DescriptionStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "DescriptionStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"description_width": ""
|
|||
|
}
|
|||
|
},
|
|||
|
"fb989ccef0454171b0affbb3b0ed1519": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "DescriptionStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "DescriptionStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"description_width": ""
|
|||
|
}
|
|||
|
},
|
|||
|
"fdfae47e9d564aefb43c0d57b65211cd": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "ProgressStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "ProgressStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"bar_color": null,
|
|||
|
"description_width": ""
|
|||
|
}
|
|||
|
},
|
|||
|
"fe067ac0f4774e4b95e653861fb29420": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "1.5.0",
|
|||
|
"model_name": "HTMLModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HTMLModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HTMLView",
|
|||
|
"description": "",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_bd906e3ecf9b416cb25ff8d4e3e1a4ce",
|
|||
|
"placeholder": "",
|
|||
|
"style": "IPY_MODEL_f5af9e6f7ad64571b095ec99f0d2359e",
|
|||
|
"value": "Downloading embedding_model.ckpt: 100%"
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
},
|
|||
|
"nbformat": 4,
|
|||
|
"nbformat_minor": 4
|
|||
|
}
|