papis-extract/papis_extract/extractors/pdf.py

133 lines
4.5 KiB
Python
Raw Normal View History

from pathlib import Path
from typing import Any, Optional
import fitz
import Levenshtein
import magic
import papis.config
import papis.logging
from papis_extract.annotation import Annotation
logger = papis.logging.get_logger(__name__)
class PdfExtractor:
def can_process(self, filename: Path) -> bool:
if not filename.is_file():
logger.error(f"File {str(filename)} not readable.")
return False
if not self._is_pdf(filename):
return False
return True
def run(self, filename: Path) -> list[Annotation]:
"""Extract annotations from a file.
Returns all readable annotations contained in the file
passed in. Only returns Highlight or Text annotations.
"""
annotations = []
with fitz.Document(filename) as doc:
for page in doc:
for annot in page.annots():
quote, note = self._retrieve_annotation_content(page, annot)
if not quote and not note:
continue
col = (
annot.colors.get("fill")
or annot.colors.get("stroke")
or (0.0, 0.0, 0.0)
)
a = Annotation(
file=str(filename),
text=quote or "",
content=note or "",
colors=col,
type=annot.type[1],
page=(page.number or 0) + 1,
)
a.tag = self._tag_from_colorname(a.colorname or "")
annotations.append(a)
logger.debug(
f"Found {len(annotations)} "
f"{'annotation' if len(annotations) == 1 else 'annotations'} for {filename}."
)
return annotations
def _is_pdf(self, fname: Path) -> bool:
"""Check if file is a pdf, using mime type."""
return magic.from_file(fname, mime=True) == "application/pdf"
def _tag_from_colorname(self, colorname: str) -> str:
color_mapping: dict[str, str] = self._getdict("tags", "plugins.extract")
if not color_mapping:
return ""
return color_mapping.get(colorname, "")
def _retrieve_annotation_content(self,
page: fitz.Page, annotation: fitz.Annot
) -> tuple[str | None, str | None]:
"""Gets the text content of an annotation.
Returns the actual content of an annotation. Sometimes
that is only the written words, sometimes that is only
annotation notes, sometimes it is both. Runs a similarity
comparison between strings to find out whether they
should both be included or are the same, using
Levenshtein distance.
"""
content = annotation.info["content"].replace("\n", " ")
written = page.get_textbox(annotation.rect).replace("\n", " ")
# highlight with selection in note
minimum_similarity = (
papis.config.getfloat("minimum_similarity_content", "plugins.extract") or 1.0
)
if Levenshtein.ratio(content, written) > minimum_similarity:
return (content, None)
# both a highlight and a note
elif content and written:
return (written, content)
# an independent note, not a highlight
elif content:
return (None, content)
# highlight with selection not in note
elif written:
return (written, None)
# just a highlight without any text
return (None, None)
# mimics the functions in papis.config.{getlist,getint,getfloat} etc.
def _getdict(self, key: str, section: Optional[str] = None) -> dict[str, str]:
"""Dict getter
:returns: A python dict
:raises SyntaxError: Whenever the parsed syntax is either not a valid
python object or a valid python dict.
"""
rawvalue: Any = papis.config.general_get(key, section=section)
if isinstance(rawvalue, dict):
return rawvalue
try:
rawvalue = eval(rawvalue)
except Exception:
raise SyntaxError(
"The key '{}' must be a valid Python object: {}".format(key, rawvalue)
)
else:
if not isinstance(rawvalue, dict):
raise SyntaxError(
"The key '{}' must be a valid Python dict. Got: {} (type {!r})".format(
key, rawvalue, type(rawvalue).__name__
)
)
return rawvalue