diff --git a/outputs/index.docx b/outputs/index.docx index 936061e..9e9753b 100644 Binary files a/outputs/index.docx and b/outputs/index.docx differ diff --git a/outputs/index.html b/outputs/index.html index fea6c0a..53b52e2 100644 --- a/outputs/index.html +++ b/outputs/index.html @@ -2549,7 +2549,8 @@ vertical-align: -.125em;
  • Vietnam
  • Uganda
  • Benin
  • -
  • Djibouti
  • +
  • Djibouti-Ethiopia
  • +
  • References
  • @@ -2567,7 +2568,7 @@ vertical-align: -.125em;

    Vietnam



    -

    Benin in recent years has seen fairly stable real GDP growth rates and downward trending poverty levels in absolute terms. Its growth rate averaged 6.4% for the years 2017 to 2019 and, with a decrease during the intermittent years due to the Covid-19 pandemic, has recovered to a rate of 6.6% in 2021 (World Bank, 2022a). There only exists sporadic and highly fluctuating data on the country’s overall inequality, with the World Bank Development Index noting a Gini coefficient of 38.6 for the year (2003) before rising to 43.4 (2011) and up to 47.8 (2015), though decreasing below the 2003 level to 37.8 (2018) in its most recent calculation. At the same time, the country’s poverty rate, even measured based on the international line, only decreased at a very slow rate in its most recent years, from a relative rate of households in poverty at 18.8% in 2019, to 18.7% in 2020 and 18.3% at the end of 2021, with the reduction threatened to be slowed further through increased prices on food and energy (World Bank, 2022a).

    +

    Benin in recent years has seen fairly stable real GDP growth rates and downward trending poverty levels in absolute terms. Its growth rate averaged 6.4% for the years 2017 to 2019 and, with a decrease during the intermittent years due to the Covid-19 pandemic, has recovered to a rate of 6.6% in 2021 (World Bank, 2022b). There only exists sporadic and highly fluctuating data on the country’s overall inequality, with the World Bank Development Index noting a Gini coefficient of 38.6 for the year (2003) before rising to 43.4 (2011) and up to 47.8 (2015), though decreasing below the 2003 level to 37.8 (2018) in its most recent calculation. At the same time, the country’s poverty rate, even measured based on the international line, only decreased at a very slow rate in its most recent years, from a relative rate of households in poverty at 18.8% in 2019, to 18.7% in 2020 and 18.3% at the end of 2021, with the reduction threatened to be slowed further through increased prices on food and energy (World Bank, 2022b).

    -

    Based on its national poverty line, Benin’s overall poverty rate is 38.5%, though it hides a strong spatial disparity between rural and urban households with 44.2% to 31.4% households in poverty respectively (World Bank, 2022a). Looking at the effect of income growth on the time to exit poverty, Alia (2017) finds a general negative correlation with stronger growth indeed leading to shorter average exit times (7-10 years for a household at a per capita growth rate of 4.2%), though this aggregate also hides a large heterogeneity primarily determined by a households size, its available human capital and whether it is located rurally. So while the study does conclude for an overall equitable pro-poor growth in Benin, rural households, beside already being relatively more poverty stricken, are in danger of being left further behind during periods of overall growth. Djossou et al. (2017) find similar pro-poor growth with spatial disparities but surprisingly see urban households potentially benefiting less than rural households from additional growth, with efforts to open up communities to harness the benefits of growth often primarily targeted at rural communities.

    +

    Based on its national poverty line, Benin’s overall poverty rate is 38.5%, though it hides a strong spatial disparity between rural and urban households with 44.2% to 31.4% households in poverty respectively (World Bank, 2022b). Looking at the effect of income growth on the time to exit poverty, Alia (2017) finds a general negative correlation with stronger growth indeed leading to shorter average exit times (7-10 years for a household at a per capita growth rate of 4.2%), though this aggregate also hides a large heterogeneity primarily determined by a households size, its available human capital and whether it is located rurally. So while the study does conclude for an overall equitable pro-poor growth in Benin, rural households, beside already being relatively more poverty stricken, are in danger of being left further behind during periods of overall growth. Djossou et al. (2017) find similar pro-poor growth with spatial disparities but surprisingly see urban households potentially benefiting less than rural households from additional growth, with efforts to open up communities to harness the benefits of growth often primarily targeted at rural communities.

    For the household-level factor of education for this disparity, the Learning Poverty index shows that in Benin 56% of children at late primary age are not proficient in reading, 55% do not achieve minimum proficiency levels at the end of primary school and 3% of primary school-aged children are not enrolled in school at all. Looking purely at attendance rates, McNabb (2018) finds that the primary household-level determinants of attendance are the wealth of a household, its religion, as well as the education level of its household head. Here, gender disparities persist, however, with girls continuously less likely to attend and adopted girls being at the greatest disadvantage, while boy tend to face higher opportunity costs than girls due to often working in the fields in which case the distance to a school begins to play an important role. While the household-level variables do play a role — through the availability of educational resources at home, differences in schooling quality and overall health and well-being — Gruijters & Behrman (2020) find that most of the disparity stems from the community-level: the difference in school quality is large, marked by high socio-economic segregation between schools, and primarily determined through an unequal distribution of teaching resources including teachers and textbooks.

    @@ -2675,21 +2670,39 @@ vertical-align: -.125em;

    Thus, though having a relatively stable and growing real GDP, Benin suffers from slow decreases in its relative poverty rates coupled with a relative stagnation in the inequality of its wealth dispersion. Additionally, the country’s poverty rates have a high heterogeneity with relatively more rural households and households with poor education in poverty. A large part of education disparities happens at the community-level, with schools marked by high socio-economic segregation, but household-level disparities, especially environmental ones, playing a role. One of those determinants is a household’s access to electricity, of which there is an enormous disparity between urban and rural households. The primary reasons for not having access to electricity are simple physical non-availability with no infrastructure being available in rural areas, as well as connection costs to the main electrical grid being too high. To decrease the effects of this driving force of inequality, both infrastructural expansion as well as policy commitments toward affordable connections to electrical grids are thus of vital importance.

    -
    -

    Djibouti

    -

    -> intro & growth/gdp -> general poverty -> inequality -> trade growth and missing social inclusion

    +
    +

    Djibouti-Ethiopia

    +
    + +
    +

    Djibouti occupies a somewhat singular position, being a tiny country with an economy focused primarily around its deep-water port, trying to establish itself as a regional hub for trade and commerce. The country’s GDP has averaged roughly 6% per year before the Covid-19 pandemic greatly reduced those growth rates (World Bank, 2022c). However, the country’s inequality levels are some of the highest in the world and its poverty rates are extreme. Additionally in many cases there is a lack of data or the data itself are lacking in several dimensions which hinders creating a cohesive picture or plan.

    +

    Poverty in Djibouti is both very high and marked by high deprivation. Using the national poverty line of around 2.18USD (2011 PPP) the poverty rate for the overall country by consumption is estimated at 21.1% in 2017, while 17% live in extreme poverty under the international poverty line of 1.90USD (2011 PPP) and 32% of the population are still under the international lower middle income poverty line of 3.20USD (2011 PPP) (World Bank, 2019, 2022c). Furthermore, there is an enormous spatial disparity between poverty rates. World Bank (2020) estimate only 15% of Djibouti’s overall population living in rural areas, with 45% of the country’s poor residing in rural areas while 37% reside in the Balbala1 area (World Bank, 2020). The report goes on to describe the high levels of deprivation for the rural poor, with the country’s highest dependency ratios, lowest participation in the labor force, very low levels of employment in the households’ heads and very low school enrollment, and while urban poor face similar restrictions they have better access to public services and higher school attendance rates. Over half the working-age population does not participate in the labor force with employment being estimated at 45% in 2017, lower than the 46.3% estimated for 1996, despite the country’s economic growth (World Bank, 2019). Emara & Mohieldin (2020) look at the overall impact of financial inclusion on poverty levels but find that, first, Djibouti is way above its targeted poverty levels, second, it is not only one of the only countries in the region (together with Yemen) to not achieve a 5% poverty level target yet, but not even on track to achieve this target by 2030 solely through improvements in financial inclusion.

    +

    Inequality in Djibouti is high, with the lowest decile only making up 1.9% of total consumption while the richest decile enjoy 32% of the total consumption, 16 times as much (World Bank, 2019). The country has an estimated Gini coefficient of 41.6 in 2017, making it one of the most unequal countries in the region (World Bank, 2022c). More of its inequality hides in a large spatial and gendered heterogeneity. Urban poor face high deprivation but higher access to public services and schooling compared to the rural poor, who have only 41% access to improved water sources, 10% access to sanitation, 3% access to electricity, and with only one third living close (under 1km) to a primary school (World Bank, 2020). While in general over half the working-age population does not participate in the labor force, the makeup is 59% of men and only 32% of women who participate, mirroring unemployment rates with an estimated third of men and two thirds of women being unemployed (World Bank, 2019). World Bank (2019) also find the labor market itself highly unequal, with its dichotomy of a public administrative sector (drawing mainly highly skilled workers) and informal private sector making up 90% of the overall labor market, the majority of women working in the informal sector and almost half of the jobs for women in this sector consisting of one-person ‘self-employed’ enterprises. Nearly 41% of working-age women find themselves in positions of vulnerable employment (World Bank, 2022a).

    -

    (Brass, 2008) argues leaders’ policy decision, first of all - matter (often more than presence or absence of resources), secondly, lead country down path of increased economic dependence and not toward development pathway. Catch22 (REPHRASE) -

    - +

    Djibouti’s economy is primarily, and within its formal sector almost exclusively, driven by its strategic location and possession of a deep-water port so it can act as a regional refueling, trading and transport shipment center (World Bank, 2022c). At the same time, this interconnected economic nature and the country’s heavy reliance on food and energy imports marks a key vulnerability and makes it immediately dependent on the stability of global trade and export markets, a stability which was recently (World Bank, 2022c). Likewise, Djibouti depends on more regional stability, since its economic growth is tightly coupled with the Ethiopian economy, sourcing around 70% of its port trade from this landlocked neighbor (World Bank, 2019). A series of droughts in the country threatened the livelihood of its nomadic and pastoralist populate, with many fleeing to neighboring countries, some becoming sedentary in village or city outskirts, and the overall nomadic population decreasing by nearly three quarters from 2009 to 2017 (World Bank, 2019, 2020). Additionally, during the early waves of Covid-19 Djibouti had one of the highest infection rates in the region, and though it had a high recovery rate, it also had one of the highest fatality rates, possibly due to deficiencies in its healthcare system (El Khamlichi et al., 2022). The country’s rising costs of now fast-maturing debts made the government leave social spending behind, leaving a budget of 5% for health and 3% for social expenditures, spendings which looks diminutive compared to its over 30% expenditures on public infrastructure (World Bank, 2022c). Only 10% of rural poor inhabitants live close (under 1km) to a health facility (World Bank, 2020).

    +

    While still facing reduced rates of labor market participation, the country has expended effort on increasing women’s opportunity for education: Having overall lower literacy rates for women still, the overall literacy rates in younger cohorts (10-24 years old) is significantly higher compared to older ones, and the gaps have decreased from 24% difference between the genders (40-60 years old) to 10% (15-24 years old) and 2% (10-14 years old) (World Bank, 2019). Women’s lower secondary completion rate grew from 28.6% in 2009 (compared to 35.2% men) to 56.3% in 2021 (54.0% for men) (World Bank, 2022a). However, for 2017, women’s upward educational mobility was still significantly worse than men’s, with non-poor men having an upward mobility of 53%, non-poor women 29%, poor men 19% and poor women only 10% against the national average of 36% (World Bank, 2019). Such differences reflect themselves in firm team and ownership structures and on the labor market, where 22.3% of all firms have female participation in ownership and only 14.2% a female top manager, and both salaried employment and agricultural employment are male-dominated (though agricultural work only with a slight and shrinking difference of 4%) (World Bank, 2022a). Overall it seems, however, that past growth in the country’s GDP is likely not favorable for an inclusive growth path, with its large-scale infrastructure investments mostly creating demand for skilled workers and neglect of social spending not allowing the buffers and social safety nets that prevent further drift into inequality. Brass (2008) argues even that the country leadership’s policy decisions carry increased weight in this, towards a path of ever increasing economic dependence and into a predicament of economic diversification requiring a more educated population, but a more educated population without already accompanying diversified economy likely enacting a successful policy or governmental opposition.

    +

    Thus, Djibouti represents a country with an overall solid growth rate but accompanying high inequalities and poverty rates, from which path it does not seem to detach without more policy intervention. It is a country with one of the highest poverty rates in the region and an enormous spatial disparity in poverty between the prime sectors of Djibouti city and the rest of the country. The rural sectors face high levels of deprivation, economic disparity and largely lacking infrastructure, and the majority of its population not participating in the labor force. The country’s labor market is to the largest degree dichotomized in the public administrative sector, comprised of mostly skilled workers, and a large private informal sector comprised mostly of unskilled workers, many of which are women. The overall economy is dependent on high levels of regional and global stability which was recently undermined by droughts, Ethiopian conflict and the Covid-19 pandemic. Nomadic and pastoralist people in the country’s rural regions were hit especially hard, with the nomadic population decreasing by nearly three quarters and many fleeing or becoming sedentary. Women face less opportunity in the country with worse upward educational mobility, less participation in the labor force, higher unemployment rates, and a continuing, if closing, gender literacy gap. Djibouti is set to miss most of its poverty target levels and move along a growth pathway that does not lend itself to inclusion unless active policy measures changing its economic investment and growth strategies are examined.

    +
    +
    +
    +
    +

    References

    Alia, D. Y. (2017). Progress Toward The Sustainable Development Goal on Poverty: Assessing The Effect of Income Growth on The Exit Time from Poverty in Benin: Exit Time Out of Poverty in Benin. Sustainable Development, 25(6), 495–503. https://doi.org/10.1002/sd.1674 @@ -2730,6 +2743,12 @@ Djossou, G. N., Kane, G. Q., & Novignon, J. (2017). Is Growth Pro-Poor
    Ebrahim, C., Jack, A., & Jones, L. (2021). Women’s economic empowerment and COVID-19: The case of vulnerable women with intersectional identities in Indonesia and Vietnam. Enterprise Development and Microfinance, 32(1), 44–56. https://doi.org/10.3362/1755-1986.21-00007
    +
    +El Khamlichi, S., Maurady, A., & Sedqui, A. (2022). Comparative study of COVID-19 situation between lower-middle-income countries in the eastern Mediterranean region. Journal of Oral Biology and Craniofacial Research, 12(1), 165–176. https://doi.org/10.1016/j.jobcr.2021.10.004 +
    +
    +Emara, N., & Mohieldin, M. (2020). Financial inclusion and extreme poverty in the MENA region: A gap analysis approach. Review of Economics and Political Science, 5(3), 207–230. https://doi.org/10.1108/REPS-03-2020-0041 +
    Esaku, S. (2021). Does income inequality increase the shadow economy? Empirical evidence from Uganda. Development Studies Research, 8(1), 147–160. https://doi.org/10.1080/21665095.2021.1939082
    @@ -2835,20 +2854,32 @@ VASS. (2006). Vietnam Poverty Update Report 2006: Poverty
    VASS. (2011). Poverty Reduction in Vietnam: Achievements and Challenges. Vietnam Academy of Social Sciences.
    +
    +World Bank. (2019). Challenges to Inclusive Growth: A Poverty and Equity Assessment of Djibouti (No. 18; Poverty and Equity Note). World Bank. http://documents.worldbank.org/curated/en/449741576097502078/Challenges-to-Inclusive-Growth-A-Poverty-and-Equity-Assessment-of-Djibouti +
    World Bank. (2012). Vietnam poverty assessment: Well begun, not yet done - Vietnam’s remarkable progress on poverty reduction and the emerging challenges. World Bank. http://documents.worldbank.org/curated/en/563561468329654096/2012-Vietnam-poverty-assessment-well-begun-not-yet-done-Vietnams-remarkable-progress-on-poverty-reduction-and-the-emerging-challenges
    +
    +World Bank. (2020). Location Matters: Welfare Among Urban and Rural Poor in Djibouti (No. 18; Poverty and Equity Note). World Bank. http://documents.worldbank.org/curated/en/203361579888116251/Location-Matters-Welfare-Among-Urban-and-Rural-Poor-in-Djibouti +
    World Bank. (2021). Tracking SDG 7: The Energy Progress Report. World Bank.
    +
    +World Bank. (2022a). Djibouti Gender Landscape (Country Gender Landscape). World Bank. http://documents.worldbank.org/curated/en/099929206302212659/IDU068dce0c7003280435b099f8040232925d37f +
    -World Bank. (2022a). Macro Poverty Outlook for Benin : April 2022. World Bank. http://documents.worldbank.org/curated/en/099930404182210208/IDU0ef8057e509b5f0432c0b50d00f85b54deb33 +World Bank. (2022b). Macro Poverty Outlook for Benin : April 2022. World Bank. http://documents.worldbank.org/curated/en/099930404182210208/IDU0ef8057e509b5f0432c0b50d00f85b54deb33 +
    +
    +World Bank. (2022c). Macro Poverty Outlook for Djibouti : April 2022. World Bank. https://documents.worldbank.org/en/publication/documents-reports/documentdetail/099310104232265208/idu08979c8f809e1604dc70be93050dce6a02a23
    World Bank. (2022). Uganda - Learning Poverty Brief. World Bank. http://documents.worldbank.org/curated/en/099021407212243534/IDU01dbf45100704f046410bb6f03c4c1cb85588
    -World Bank. (2022b). Uganda Poverty Assessment: Strengthening Resilience to Accelerate Poverty Reduction. World Bank. http://documents.worldbank.org/curated/en/099135006292235162/P17761605286900b10899b0798dcd703d85 +World Bank. (2022d). Uganda Poverty Assessment: Strengthening Resilience to Accelerate Poverty Reduction. World Bank. http://documents.worldbank.org/curated/en/099135006292235162/P17761605286900b10899b0798dcd703d85
    Yikii, F., Turyahabwe, N., & Bashaasha, B. (2017). Prevalence of household food insecurity in wetland adjacent areas of Uganda. Agriculture & Food Security, 6(1), 1–12. @@ -2856,7 +2887,12 @@ Yikii, F., Turyahabwe, N., & Bashaasha, B. (2017). Prevalence of household f
    Ylipaa, J., Gabrielsson, S., & Jerneck, A. (2019). Climate change adaptation and gender inequality: Insights from rural vietnam. Sustainability (Basel, Switzerland), 11(10), 2805–2805. https://doi.org/10.3390/su11102805
    -
    +

    Footnotes

    + +
      +
    1. The Balbala area comprises the 4th and 5th district out of the five districts of Djibouti city.↩︎

    2. +
    +