import locale from pathlib import Path # from whisper import Whisper # from pyannote.audio import Pipeline # import torch import static_ffmpeg import file_operations def prep() -> None: locale.getpreferredencoding = lambda: "UTF-8" # download and add ffmpeg to env static_ffmpeg.add_paths() def audiofile(url: str, input_path: Path) -> Path: file = file_operations.download_from_url(url, input_path) file_wav = file_operations.convert_to_wav(file, input_path) file.unlink() return file_wav # # def diarization(access_token: str | None) -> Pipeline: # pipeline = Pipeline.from_pretrained( # "pyannote/speaker-diarization", use_auth_token=access_token # ) # device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # return pipeline.to(device) # # # def whisper() -> Whisper: # # LOAD MODEL INTO VRAM # device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # return whisper.load_model("large", device=device)