From 4cd09fbd46c44019cb4970b74e207516cbfbb441 Mon Sep 17 00:00:00 2001 From: Marty Oehme Date: Sat, 11 Oct 2025 08:36:29 +0200 Subject: [PATCH] Add labels to popcorn qmd computations --- popcorn.qmd | 15 +++++++++++++-- 1 file changed, 13 insertions(+), 2 deletions(-) diff --git a/popcorn.qmd b/popcorn.qmd index a107d9e..7c1171f 100644 --- a/popcorn.qmd +++ b/popcorn.qmd @@ -25,7 +25,8 @@ enable its service to run in the background with `ln -s /etc/sv/popcorn /var/service`. ```{python} -# | echo: false +#| label: setup + import os from typing import Any, Awaitable, Mapping @@ -88,7 +89,7 @@ glance a more 'user-choice'-aligned view of how many aisles the buffet offers, and how many of those the users are eating from. ```{python} -# | echo: true +#| label: fig-filesize from notebooks.popcorn import plt_filesize pplot(plt_filesize) ``` @@ -136,6 +137,7 @@ and the number of unique installs (i.e. how many people provide their statistics). We will look at both of these in turn. ```{python} +#| label: fig-weekly-packages from notebooks.popcorn import plt_weekly_packages pplot(plt_weekly_packages) ``` @@ -155,6 +157,7 @@ unique uploads, in we can see a similar pattern, though even more strongly pronounced. ```{python} +#| label: fig-unique-installs from notebooks.popcorn import plt_unique_installs pplot(plt_unique_installs) ``` @@ -198,6 +201,7 @@ Next, let's verify that hunch by actually looking at the installed packages _per user_ for each day. ```{python} +#| label: fig-packages-relative from notebooks.popcorn import plt_pkg_relative pplot(plt_pkg_relative) ``` @@ -257,6 +261,7 @@ packages which take the top-installed spots on users' systems. ```{python} +#| label: fig-top-packages from notebooks.popcorn import plt_top_packages pplot(plt_top_packages) ``` @@ -309,6 +314,7 @@ available. Let's turn to the 'distribution' of package installations. ```{python} +#| label: fig-package-distribution from notebooks.popcorn import plt_package_distribution pplot(plt_package_distribution) ``` @@ -383,6 +389,7 @@ themselves. Let's start by looking at the prevalence of the different major versions. ```{python} +#| label: fig-kernel-versions from notebooks.popcorn import plt_kernel_versions pplot(plt_kernel_versions) ``` @@ -436,6 +443,7 @@ major version as 99. The strange version starts appearing on Let's turn to the actual adoption of kernels over time in the next visualization. ```{python} +#| label: fig-kernel-timeline from notebooks.popcorn import plt_kernel_timeline pplot(plt_kernel_timeline) ``` @@ -565,6 +573,7 @@ instead: here we just add up all the files reported so far for each day, and show the resulting growth line. ```{python} +#| label: fig-filesize-cumulative from notebooks.popcorn import plt_filesize_cumulative outp, _ = plt_filesize_cumulative.run() # pyright: ignore outp @@ -581,6 +590,7 @@ Let's also look at the packages installed on systems for different time slices. We'll start with a look at the packages per weekday. ```{python} +#| label: fig-weekday-packages from notebooks.popcorn import plt_weekday_packages pplot(plt_weekday_packages) ``` @@ -600,6 +610,7 @@ Tuesdays and Wastebin Wednesdays if you will. Alright, but let's also take a look at the package numbers per month instead. ```{python} +#| label: fig-month-packages from notebooks.popcorn import plt_month_packages pplot(plt_month_packages) ```